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Figure 1: Experimental Design.

Supplemental Details of Experimental Set-up

Figure 1 outlines the experimental set-up. Using the set of 1386 images that were viewed by

subjects in [1], four partitions of training and test splits were randomly generated. There are

127 ways to combine the up to 7 regions of interests (ROIs) associated to high-level visual

understanding, i.e. EBA, FFA, LO, OFA, PPA, RSC, TOS, when enumerating all possible

combinations of including one to seven ROIs. For each partition, each combination of ROI

regions, and each of the four object categories, i.e. humans, animals, buildings, foods, activity

weights are generated for all training examples in the clear sample set by using a cross-validated

classifier trained on the voxel activity from a given ROI combination (see fMRI Activity Weight

Calculation for more details). For each partition, ROI combination, and object category, 5

balanced classification problems were set-up by randomly sampling a partition’s training set

to create a balanced training set with the maximally, equal number of positive and negative

examples for an object category. This balanced training set is then used to train the baseline

hinge loss (HL) classifier and activity weighted loss (AWL) classifier on Histogram of Oriented
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Gradients (HOG) features of images in the balanced training set as well as Convolutional Neural

Network (CNN) features.

Supplemental Accuracy Analysis

Additional experiments were conducted to determine how many ROI combinations had activity

weights produced results that were statistically significantly better than those from the baseline

classifiers with hinge loss. Not only do we observe significant improvements in classification

accuracy when activity weights were generated from voxels in all 7 ROIs or from voxels in

the EBA, FFA, and PPA regions, we also observe that using activity weights significantly in-

creased classification accuracy when activity weights were generated from most of the 127 ROI

combinations of voxels (Figure 2).
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Figure 2: Significance of all combinations of ROIs. The percentage of combinations (out of
127 combinations of ROIs) in which the mean classification accuracy of classifiers that used
activity weights was significantly better than that of classifiers that did not use activity weights.
One-tailed, paired t-tests were used to test significance.
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Supplemental ROI Analysis

The main text of the paper contains ROI influence plots for biologically-informed classifiers

trained with HOG features [2]. Here we present the remaining ROI influence plots for CNN

features [3]. Figure 3 shows which ROIs significantly differed from the respective null dis-

tributions for each object category. This analysis further confirms the significant impacts of

the EBA region in improving the classification of humans and animals and of the PPA region

in improving the classification of buildings and foods. Similar to what we observed with the

HOG features, the EBA area dramatically exceeds the significance thresholds of the humans

and animals null distributions.

Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) [4] is commonly deployed to solve the quadratic pro-

gramming problem that follows from the articulation of SVM as an optimization problem. For

binary classification, assume a collection of labeled training data points (x1, y1), . . . , (xn, yn),

where x ∈ Rd is a feature vector and y ∈ {−1, 1} is a class label. The dual form of the quadratic

programming problem for SVM is:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj,

subject to :

0 ≤ αi ≤ C, for i = 1, 2, . . . , n,
n∑
i=1

yiαi = 0

where C is a hyperparameter that controls the cost of misclassification, K(xi, xj) is a kernel

function, and αi are Lagrange multipliers.

SMO treats the above problem as the smallest possible series of sub-problems. For any two
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Analysis of ROIs (CNN)
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Figure 3: The influence of each ROI for the four object categories (CNN features). In each
graph, the fraction of the 64 ROI combinations containing a specific ROI that had a mean
classification accuracy greater than that of all 127 sets of experiments is plotted. The threshold
for the 95% confidence interval (p < 0.0004) is also overlaid, showing which ROIs significantly
differed from the respective null distribution for each object category. Bonferroni correction
(α = 127) is used to account for multiple comparisons.

5



multipliers α1 and α2, the constraints reduce to:

0 ≤ α1, α2 ≤ C

y1α1 + y2α2 = k

which can be solved analytically to find a minimum of a one-dimensional quadratic function.

k is fixed on each iteration, and is the negative of the sum over the rest of the terms in the

equality constraint. The SMO algorithm solves the problem via three steps: (1) find α1 that

violates the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem; (2) pick α2

and optimize the pair (α1, α2); (3) repeat the first two steps until the algorithm converges. To

solve the entire optimization problem, this procedure must be applied until all of the Lagrange

multipliers satisfy the KKT conditions. By changing the SVM loss function to Eq. 2 in the

main paper, the formulation becomes non-convex, with no guarantees on global convergence.

However, by design, the optimization finds good local solutions, steered by the activity weights.
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