
1

Walter J. Scheirer and Terrance E. Boult 

 

Statistical Methods for Open 
Set Recognition



Part 3: Algorithms that Minimize the 
Risk of the Unknown
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Let’s include open space risk in our 
optimization problem 
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Slab Model
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Base Linear 1-vs-Set Machine
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Generalization
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Specialization
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Open space risk for linear 
slab model
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Open space risk for linear 
slab model
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Two additional terms
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Importance of open 
space around A

Importance of open 
space around Ω



Training and testing data
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Space of positive class data: P 
Space of other known class data: K 
Positive training data: V = {v1, …, vm} from P 
Negative training data: K = {k1, …, kn} from K 
Unknown negatives appearing in testing: U 
Testing data: T = {t1, …, tz}, ti ∈  P ⋃ K ⋃ U 

ˆ
ˆ



Sketch of the 1-vs-Set Machine  
training algorithm

1. Train a linear SVM f using V and K 

2. Generate decision scores for each training point in V 
and K  

3. Sort decision scores, where sk is the minimum and sj is 
the maximum 

4. Initialize A to margin plane of f, and Ω to sj   

5. Iteratively move A to sk+1 or sk-1, Ω to sj-1 or sj+1 to minimize 
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Plane A after initial 
optimization

1-vs-Set Machine Plane Refinement
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Plane A after refinement  
with pA = -0.5  



1-vs-Set Machine Prediction
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function PREDICT(tx, f, A, Ω) 
 if (A ≤ f(tx) and f(tx) ≤ Ω) then Return +1 
     else Return -1 
     end if
end function



What could be better about the 
1-Vs-Set Machine?

• Does not inherently support multi-class open set 
recognition 

• Does not support non-linear kernels 

• Does not contain a CAP model 

• Lack of calibrated probability scores
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PI-SVM: Modeling Probability of 
Inclusion

• Fit a robust single-class probability model over the 
positive class scores from a discriminative binary 
classifier 

- Binary (RBF) classifier helps discriminate the positive 
class from the known negative classes 

- Single-class probability model adjusts decision 
boundary to avoid misclassification of “unknowns”
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Consider a kernelized SVM
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Support  
Vectors

RBF kernel

Bias Term



Fit model to tail of positive side of 
decision boundary
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Probability model for inclusion
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Prior prob. 
of class y

Constant Weibull CDF 
defined by θy



Unnormalized Posterior Estimate
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If all classes and priors are known, then 
Bayes’ theorem yields: 

But this isn’t true for open set recognition, so we let ξ = 1 
and treat the posterior estimate as unnormalized



Multi-class Open Set Recognition 
with PI-SVM

20

Min. threshold on 
class probability



Tail Size Estimation

• EVT tells us how to model extrema, but says 
nothing about how many samples to model 

- The difference between a tail size of 5% and a tail 
size of 20% can produce a difference in recognition 
accuracy of 15-20% 

- Need automatic estimation
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Support Vectors as Extrema

• Support vectors are a type of extreme sampling that 
effectively describes the class boundary  

• Is there a known parametric relationship between training 
data size, dimensionality, and the number of support 
vectors?
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No

Alternative: consider extrema to be the points close to the 
original decision boundary and count them



Tail size estimation
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Indicator Function

When > 0, some points 
inside the positive 
boundary included

Positive Tail Size

Tail size approximation:

ψ ∈ [1.25 − 2.5] 



Tail size estimation
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First class folds All class folds



Normalized decision scores 
for PI-SVM
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PI-SVM Implementation
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Patch to LIBSVM available at: 
https://github.com/ljain2/libsvm-openset

Usage: svm-train [options] training_set_file [model_file] 
options: 
-s svm_type : set type of SVM (default 0) 
 0 -- C-SVC 
 1 -- nu-SVC 
 2 -- one-class SVM 
 3 -- epsilon-SVR 
 4 -- nu-SVR 
 5 -- open-set oneclass SVM (open_set_training_file required) 
 6 -- open-set pair-wise SVM  (open_set_training_file required) 
 7 -- open-set binary SVM  (open_set_training_file required) 
 8 -- one-vs-rest WSVM (open_set_training_file required) 
 9 -- One-class PI-OSVM (open_set_training_file required) 
 10 -- one-vs-all PI-SVM (open_set_training_file required)



Is PI-SVM what we’re looking for for open 
set recognition?

• Pros: 

+ Supports multi-class open set recognition 

+ Better generalization than the 1-vs-Set Machine 

• Cons: 

- One-sided calibration model (just probability of 
inclusion) 

- Does not make use of a CAP model
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NN+CAP
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Let dx be the distance to the nearest neighbor of x

Let and

In a multi-class setting, this results in a thresholded 
NN algorithm that can reject an input as unknown.



NN+CAP

• Pros: 

+ With sufficiently dense sampling, NN+CAP 
reduces to NN 

+ Limiting error of no more than twice the Bayes 
error rate 

+ Simple to train 
• Cons: 

- Weak probability model
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The Weibull-calibrated SVM (W-SVM)

• Binary SVMs are better than 1-Class SVMs - how do 
they fit into the context of CAP models? 

• Unfortunately, the decision score isn’t a canonical 
sum. But calibration is possible (Hoffman et al. Annals 
of Stat. 2008): 

1. Collect all positive coefficients in one sum 

2. Collect all negative coefficients into another sum 

3. Split the bias between them 

4. View SVM as applying a decision rule over which is more 
similar

30T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. Annals of Stat., 2008.



Binary RBF SVM incorporating a 
CAP model

• Combine probabilities computed for both 1-class 
and binary RBF SVMs 

• 1-class SVM CAP model is a conditioner
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if PO (y|x) > δτ, then 

consider PO (y|x) 

else 

reject

could be very small



Dual tail fitting
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Assume a set of known classes Y

For a class y ∈ Y, we can use positive scores from y to 
estimate P+(y|x). 

We can use negative scores from other known classes to 
estimate P-(Y \ y | x). 

Separating positive and negative data is useful



Dual tail fitting
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Dual tail fitting
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Closed set scenario: P+(y|x) = 1 - P-(Y \ y | x)

In an open set scenario, we can’t make the above 
assumption.

To minimize open set risk, P+ and P- are considered only 
when PO (y|x) > δτ



EVT Parameters

• Reverse Weibull and Weibull are defined by three 
parameters 

- location ν, scale λ, and shape κ   
• Maximum Likelihood Estimation to estimate the 

best fits for η and ψ 

- νη, λη, κη 
- νψ, λψ, κψ
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Two independent estimates for 
P( y | f(x))
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Weibull CDF from match data

Reverse Weibull CDF from non-match data



Combining probability estimates
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Two options:
Pη × Pψ: the probability that the input is from the positive 
class AND NOT from any of the known negative classes. 

Pη + Pψ: either a positive OR NOT a known negative. 

For open set recognition, Pψ should be modulated by 
other supporting evidence of the sample being positive. 
Product is the preferred combo. 



Multi-class W-SVM recognition

38

Indicator variable: ιy = 1 if PO (y|x) > δτ 

free parameter

free parameter



Training a W-SVM Step-by-Step

• For simplicity, let’s focus on a single class (“3”) 

• Two SVM models (1-class and binary) 

• Three EVT distribution fits 

• The collection of SVM models, EVT distribution 
parameters, and thresholds constitute the W-
SVM.

39



Step 1: Train a 1-class SVM f o
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Step 2: Fit Weibull over tail of 
scores from f o
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Step 3: Train a binary SVM f
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Step 4: Fit EVT distributions over 
tails of scores from  f
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W-SVM testing (known class)

• Let’s focus on the class we just trained for (“3”) 

• Six steps are necessary to test the input 

• Assume four known classes (“0”, “1”, “2”, “3”)

44



Step 1: Apply 1-class SVM CAP  
model for all known classes

45

f o(x) = s00

Input: x = 3
f o(x) = s11

f o(x) = s22
f o(x) = s33



Step 2: Normalize all 1-class SVM 
scores using EVT models

46

λo,0, νo,0, κo,0   λo,1, νo,1, κo,1   

λo,2, νo,2, κo,2   λo,3, νo,3, κo,3  

s0 s1

s2 s3

Apply CDF for each class to each score
Probability 
model for test 
instance: Po



Step 3: Test probabilities

47

Po(0|x) < δτ, ι0 = 0; Po(1|x) < δτ, ι1 = 0;

Po(2|x) > δτ, ι2 = 1; Po(3|x) > δτ, ι3 = 1



Step 4: Apply binary SVMs
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f  (x) = s22 f   (x) = s33



Step 5: Normalize all binary SVM scores 
using EVT match and non-match models
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λη,2, νη,2, κη,2   λψ,2, νψ,2, κψ,2   

λη,3, νη,3, κη,3   λψ,3, νψ,3, κψ,3   

s2

s3

Pη,2 Pψ,2

Pη,3 Pψ,3

Apply 2 CDFs per class for each score



Step 6: Fuse and test probabilities
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Pη,2(x) × Pψ,2(x) × ι2 = 0.001 < δR

Pη,3(x) × Pψ,3(x) × ι3 = 0.877 > δR

Pη,0(x) × Pψ,0(x) × ι0 = 0 < δR

Pη,1(x) × Pψ,1(x) × ι1 = 0 < δR



Models for class ‘3’ and the data point for 
this example
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P(3|3) > δR
Threshold on prob.

Monotonically 
decreasing prob. 
bound

Prob. from kernel machine 
varies locally with distance to 
training points

x
W-SVM thresholded regionCAP thresholded 

region



W-SVM testing (unknown class)

• Assume four known classes (“0”, “1”, “2”, “3”) 
• Consider as input a member of a class that is 

different from the training data (“Q”) 
- This point will fall outside of the CAP thresholded region 

(i.e., it exists in open space) 

• Four steps are necessary to reject the input
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Step 1. Apply 1-class SVM CAP 
model for all known classes
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Input: x = Q
f o(x) = s00 f o(x) = s11

f o(x) = s22
f o(x) = s33



Step 2. Normalize all 1-class SVM 
scores using EVT models

54

λo,0, νo,0, κo,0   λo,1, νo,1, κo,1   

λo,2, νo,2, κo,2   λo,3, νo,3, κo,3  

s0 s1

s2 s3

Apply CDF for each class to each score
Probability 
model for test 
instance: Po



Step 3: Test probabilities

55

Po(0|x) < δτ, ι0 = 0; Po(1|x) < δτ, ι1 = 0;
Po(2|x) < δτ, ι2 = 0; Po(3|x) < δτ, ι3 = 0  



Step 4: Apply indicator variables to 
binary SVMs

56

Pη,0(x) × Pψ,0(x) × ι0 = 0 < δR
Pη,1(x) × Pψ,1(x) × ι1 = 0 < δR
Pη,2(x) × Pψ,2(x) × ι2 = 0 < δR
Pη,3(x) × Pψ,3(x) × ι3 = 0 < δR



Models for class ‘3’ and the data 
point for this example

57

P(3|Q) = 0 

Threshold on prob.

Monotonically 
decreasing prob. 
bound

Prob. from kernel machine 
varies locally with distance 
to training points

x W-SVM thresholded region

CAP thresholded region



W-SVM Implementation

58

Patch to LIBSVM available at: 
https://github.com/ljain2/libsvm-openset

Usage: svm-train [options] training_set_file [model_file] 
options: 
-s svm_type : set type of SVM (default 0) 
 0 -- C-SVC 
 1 -- nu-SVC 
 2 -- one-class SVM 
 3 -- epsilon-SVR 
 4 -- nu-SVR 
 5 -- open-set oneclass SVM (open_set_training_file required) 
 6 -- open-set pair-wise SVM  (open_set_training_file required) 
 7 -- open-set binary SVM  (open_set_training_file required) 
 8 -- one-vs-rest WSVM (open_set_training_file required)

9 -- One-class PI-OSVM (open_set_training_file required) 
 10 -- one-vs-all PI-SVM (open_set_training_file required)



Specialized Support Vector Machine (SSVM)

59

Junior, Wainer and Rocha, arXiv 2016



Specialized Support Vector Machine 
(SSVM)

Ensure bounded positively labeled open space by using 
an RBF kernel and forcing the bias to be negative

60

Determined via open set grid search procedure 



Specialized Support Vector Machine 
(SSVM)

61



How can we evaluate open set 
recognition in a controlled manner?

62



Accuracy as a statistic for open set 
problems 
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Accuracy =
TP + TN

TP + TN + FP + FN

Imagine the following case: 
1/100 TP correct 
100,000/100,000 TN correct 
99.9% accuracy!



F-measure as a statistic for open set 
problems 

64

F-measure = 2⇥ Precision⇥ Recall

Precision + Recall

Consistent point of comparison across  
inconsistent precision and recall numbers:



Open Set Object Recognition
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Cross-data set methodology*

A. Torralba and A. A. Efros, “Unbiased Look at Dataset Bias,” in IEEE CVPR 2011.

Training: Caltech 256 

Testing: Caltech 256 + ImageNet

Open Universe of 88 classes: 1 positive class, n training classes, 
87 negative testing classes (532,400 images) 
Open Universe of 212 classes: 1 positive class, n training classes, 
211 negative testing classes (13,610,400 images)

known  
classes

known  
classes + unknown  

classes



Features

66

Histogram of Oriented Gradients

LBP-like descriptor

Center pixel

A. Sapkota, B. Parks, W.J. Scheirer, and T. Boult, “FACE-GRAB: Face Recognition with General Region Assigned to 
Binary Operator

N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in IEEE CVPR, 2005

(Dalal and Triggs 2005) © 2005 IEEE



1-vs-Set Machine vs. Typical SVMs
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**
*
_

++

1-vs-Set Machine is statistically significant at p < 0.01

1-vs-Set Machine is statistically significant at p < 0.05

No statistical significance

Baseline Machine is statistically significant at p < 0.01



Top 25 classes for the open universe 
of 88 classes
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Top 25 classes for the open universe 
of 88 classes
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F-measure as a function of 
openness
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Near and far plane pressures for 
open universe of 88 classes
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The second plane 
has an impact on 
recognition 
performance



Biometric Verification
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Does this incoming sample match 
the one in our system?

Answer: Verified or Not Verified

P. J. Phillips et al., Multiple Biometrics Grand Challenge

New 
Sample

Stored 
Image



Score Distributions
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(d) (g)

τ
Image Credit: A. Czajka

Impostors



Open Set Face Verification
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Labeled Faces in the Wild

Genuine Pair

Impostor Pair

Impostor Pair

Impostor Pair

Gallery classes: 12 people with at least 50 images
Impostor classes: 82 other people in LFW
1,316 test images across all classes
Features: LBP-like and Gabor*

N. Pinto, J. J. DiCarlo, and D. D. Cox, “How Far Can You Get with a Modern Face Recognition Test Set 
Using Only Simple Features?” in IEEE CVPR, 2009.



Open set face verification
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PI-SVM Object Recognition
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PI-SVM Object Recognition
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Machine Learning Benchmark: LETTER
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Machine Learning Benchmark: LETTER
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Machine Learning Benchmark: LETTER
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Alternate Priors: Freq. of Occurrence 
of Letters in a Reference Corpus
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W-SVM Object Recognition
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Machine Learning Benchmark: LETTER
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Fingerprint Spoof Detection

Incomplete knowledge of fabrication materials is 
always present at training time

84



Materials and Quality
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Live EcoFlex Latex Gelatine WoodGlue Silgum
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Automatic detection and adaptation of 
a spoof detector to new spoof materials

86

Known Material: 
Live

…

Acquired Fingerprints

Binary W-SVM Spoof 
Detector

Multi-class W-SVM 
Novel Material Detector

Adapt Using Novel Spoof 
Materials

Decision:
Live / Spoof

Known or Unknown 
Material: Spoof

?

Latex

Live

Gelatine

Novel 
Material

?

?

Open Set Fingerprint
Spoof Detection

Rattani et al. “Open Set Fingerprint Spoof Detection Across Novel Fabrication Materials, IEEE T-IFS 2015



W-SVM Novel Material Detector
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W-SVM Novel Material Detector 

Known Class:
Live

Known Class:
Gelatine

Known Class:
Latex

1-Class Decision Boundary
Binary Decision Boundary

Novel Materials in
Open Space
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W-SVM Spoof Detector
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W-SVM Spoof Detector 

Known Positive
Class: Live

Known Negative
Material: Gelatine

Known Negative 
Material: Latex

1-Class Decision Boundary

Binary Decision Boundary

Known and Unknown 
Materials in Open Space

?

?

?

?

?

?
?

?
?

?

?



Experimental assessment of W-SVM
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http://people.clarkson.edu/projects/biosal/fingerprint/

Training: LivDet 2011 is partitioned into 1,000 live and 400 
spoof images corresponding to two fabriaction materials

Testing: LivDet 2011 is partitioned into two non-overlapping 
partitions T1 and T2

Each Ti consists of 500 live 
and 500 spoof images 

200 images are from spoof 
materials known at training 
time; 300 are from novel 
materials



Performance difference between 
known and novel materials
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Performance by feature set
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Adapted spoof detector
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DET curves shift to the left after 
adaptation
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Better



How well could you do with these 
features and the W-SVM?
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Open World Evaluation

Training	  phase

Tes,ng	  phase

Parameter	  Learning	  Phase Incremental	  Learning	  Phase

Closed	  Set	  	  Tes,ng
Unknown	  Categories

Known	  Categories

95
Open	  Set	  Tes,ng	  

? ?



Opening an Existing Algorithm: 
Nearest Non-Outlier (NNO) Algorithm
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Probability

A. Bendale, T. Boult “Towards Open World Recognition” CVPR 2015



NCM – Metric Learning
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NCM Classifier with Metric Learning
T Mensink, J Verbeek, F Perronin, G Csurka “Distance based Image Classification: Generalizing to New Classes at Near 
Zero Cost” IEEE TPAMI 2013 
M Ristin, M Guillaumin, J Gall, L Van Gool “Incremental Learning of NCM Forests for Large-Scale Image Classification” 
CVPR 2014



Opening an Existing Algorithm: 
Nearest Non-Outlier (NNO) Algorithm
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W	  =	  Linear	  Transforma,on	  (weight	  matrix	  from	  metric	  learning)

Standard	  gamma	  func,on	  
In	  volume	  of	  m-‐D	  ball Class	  mean	  for	  class	  i

τ	  is	  threshold	  for	  open	  world



Training for Open World
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NCM - ML NNO

• Parameter Learning with initial set of categories

• Estimation of τ for open set learning to balance open space risk

• Optimize for Known vs Unknown Errors

• Incrementally add new categories



Learning Novel Concepts

Nearest Class Mean Classifier Nearest Non Outlier Algorithm

Adding Novel Concepts to the System



Experiments
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Datasets	  
• ILSVRC’10:	  1.2M	  training	  images,	  1000	  classes	  
• ILSVRC’12:	  1.2M	  training	  images,	  1000	  classes

Features	  
• Dense	  SIFT	  features,	  Quan,zed	  into	  1000	  Bag	  of	  Visual	  Words	  
• Publically	  available	  features	  
• LBP,	  HOG,	  Dense	  SIFT	  (for	  ILSVRC’12)

Algorithms	  
• Nearest	  Class	  Mean	  -‐	  ML	  Classifier	  (NCM)	  [Mensink	  etal	  PAMI	  2013]	  
• Nearest	  Non-‐Outlier	  Algorithm	  (NNO)	  [This	  Paper]	  
• 1vSet	  [Scheirer	  etal	  PAMI	  2013]	  
• Linear	  SVM	  [Liblinear,	  	  Fan	  etal	  JMLR	  2008]
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Opening Deep Networks

• Softmax always has a “winner” and re-weights 
scores  

• Networks are easily fooled with high confidence  
• “Fooling” images are obviously “open set” and 

should be rejected 
• Adversarial images are more problematic - 

visually close but often far in label space

104

A. Bendale and T. Boult “Towards Open Set 
Deep Networks” CVPR 2016 (Short oral)



Opening Deep Networks
Can hill climb to find fooling images*
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AlexNet	  

* A. Nguyen, J. Yosinski, and J. Clune “Deep neural networks are easily fooled: High confidence 
predictions for unrecognizable images” CVPR 2015

Soemax	  Output	  
(0.998,	  baseball)

Soemax	  Output	  
(0.98,	  Hamerhead)

Soemax	  Output	  
(0.992,	  baseball)



Adversarial Manipulation of AlexNet

AlexNet	  
Soemax	  Output	  
(.32,	  ScubaDiver)

Adversarial images generated using: Goodfellow, Shelns and Szegedy “Explaining and harnessing adversarial 
examples,” ICLR 2015

+

Hammerhead	  Image Noise	  (*100)

These	  are	  “visually	  near”	  but	  mislabeled	  	  



MAV and OpenMax

• Insight:  A class is represented not just by its output, 
but by its Mean Activation Layer (scores for all 
classes) 

• MAV is just the average in penultimate layer 
• “EVT distances” from MAV is a CAP model 
• Given MAV, estimate probability of “unknown” via 

EVT and OpenMax = Softmax type normalized 
probability including probability of unknown
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Open Set Deep Networks
Idealized	  class

Real:	  SM	  0.94	   Fooling:	  SM	  1.0, Openset:	  SM	  0.15	  Soemax	  Output	  
(0.992,	  baseball)
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Step 1:  Represent “known” as mean activation of a 
class + EVT-model for “outlier” 
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Step 2:  Compute “open max” with explicit probably of 
unknown



Real:	  SM	  0.57,	  
OM	  0.58

Fooling:	  SM	  
0.98,	  OM	  0.00

Openset:	  SM	  
0.25,	  OM	  0.10

Adversarial	  Scuba	  Diver	  	  
SM	  0.32	  Scuba	  Diver	  	  
OM	  0.49	  Unknown



Open Set Deep Networks
Text

Real:	  SM	  0.94	  	  
OM	  0.94	  

Fooling:	  SM	  1.0,	  
OM	  0.00

Openset:	  0.15,	  	  
OM:	  0.17



Wrapping up…
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Further Reading
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IEEE WACV, 2013. 
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Across Novel Fabrication Materials,” IEEE T-IFS, 10(11) Nov. 2015. 
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Code
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1-vs-Set Machine, PI -SVM, and W-SVM on GitHub:  
https://github.com/ljain2/libsvm-openset

Data sets:  
http://www.metarecognition.com/openset/


