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Abstract— This paper proposes a fully automated post image
processing scheme based on facial feature detection to correct
the horizontal temporal shear or rolling shutter distortion. This
distortion occurs when obtaining images or video sequences
from a CMOS camera with a rolling shutter whenever there
is relative horizontal movement between the sensor and the
object being imaged during the integration time of the image
frame. Unlike CCD sensors, such as the interline CCD, which
provides an electronic shutter mechanism called a global shutter
in which the light collection starts and ends at exactly the same
time for all pixels, CMOS sensors can not hold and store all
the pixels at the same time. Each scanline is exposed, sampled,
and stored in sequence, resulting in the rolling shutter effect
or temporal distortion of the image that will cause inaccurate
facial recognition results.

Facial feature detection is performed using correlation based
methods with low computational complexity. The location of
key facial feature points is then used to calculate the temporal
horizontal shear or the distortion of the image. This information
can then be used to remove the temporal horizontal shear
distortion from the detected face or the entire image. We present
experimental results on controlled data sets and real scenes
to show that the proposed method yields excellent results in
reversing the temporal horizontal shear caused by the CMOS
rolling shutter sensor and significantly improves the accuracy
of our facial recognition algorithm.

I. INTRODUCTION

Many different face recognition algorithms have been
developed over the last few years [7]. However, performing
facial recognition in unconstrained environments has not
been entirely solved because of its fundamental difficul-
ties concerning various factors in the real world such as
resolution, pose (in-plane and out-plane rotation), scale,
illumination changes, occlusion, improper alignment, facial
expressions, atmospheric and motion blur. Another issue in
unconstrained, long-range face recognition is the trade off
between field of view (FOV) and the resolution of a detected
face. For example, the FOV using a 1 MPixel sensor at
100 meters is only about 1 meter which is unsuitable for
unconstrained applications such as monitoring a choke point
for border security. This necessitates the use of a higher
resolution camera since it will give us a larger field of view
(FOV) while maintaining an acceptable resolution to perform
facial identification at ranges � 50 meters. Unfortunately,
many lower cost, high resolution cameras such as the Canon
5D camera which has a resolution of 12.8 MP or the Canon
7D camera which has a resolution of 18.0 MP are being
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Fig. 1. Example of Rolling Shutter Distortion. Top: Non-Distorted Image.
Bottom: Image With Real Rolling Shutter Distortion

equipped with low-cost, low-power, complementary-metal-
oxide-semiconductor (CMOS) sensors that can geometrically
distort the image if there is movement of the camera or the
object being imaged during the integration time of the image.

An image sensor is a device that converts photons into
electrons or converts an optical image into an electrical sig-
nal. Typically image sensors are either a charge-coupled de-
vice (CCD) or a complementary-metal-oxide-semiconductor
(CMOS). A CMOS sensor, unlike the CCD sensor, does not
expose the entire array at the same time since it cannot store
and hold all of the individual pixel charges for the entire
array. Instead it uses a rolling shutter where each row or
scanline is exposed at different times, read out sequentially,
and then merged together to form a single image. The output
image does not include any geometric distortion as long
as the camera and the object being imaged are stationary
with each other. However, if there is relative movement
horizontally between the sensor and the object being imaged
the output image will be distorted or temporally sheared as
shown in Figure 1. This is referred to as the rolling shutter
effect.

The resulting image is unaesthetically pleasing and cannot
be used directly for many computer vision applications such
as facial recognition, as shown in Section V of this paper.
This paper proposes a fully automated post image processing
scheme based on facial feature detection to correct the



horizontal temporal shear or rolling shutter distortion from a
single image or individual frames from a video sequence.
Our algorithm, while originally designed to improve the
results of our facial recognition algorithm, has a dual use
in recreational photography since many consumer grade
camcorders, cameras, PDAs, and cellular phones are being
equipped with CMOS sensors and have integrated face
detection software or the ability to perform face detection
by downloading 3rd party face detection software. It is first
assumed that a frontal face image has been detected in the
scene. Subsequent facial feature detection of the eyes and
nose is performed using correlation based methods with low
computational complexity. The location of the feature points
is then used to calculate temporal horizontal shear or the
distortion of the image. This information can then be used
to reverse the horizontal shear distortion from the detected
face or the entire image if we assume global motion model.

We organize the rest of the paper as follows: Previous
works on rolling shutter distortion and compensation are
presented in Section II. Our rolling shutter sensor model and
analysis of the temporal horizontal shear distortion caused by
the CMOS rolling shutter sensor architecture is presented in
Section III. Section IV contains the details and implementa-
tion scheme for the purposed algorithm. Experimental results
are given in Section V. Section VI presents our conclusions
and direction for future work.

II. PREVIOUS WORKS

Rolling shutter cameras are not commonly used in com-
puter vision applications due to the distortions that can occur
in the output image. Over the past few years, analysis of the
rolling shutter sensor and a few applications to remove the
distortion has been described in literature.

A. Rolling Shutter Camera Models and Distortion Compen-
sation

Boult et al. [4] provided a short analysis of the rolling
shutter model and its effects on facial recognition. Baker
et al. [2] purposed an algorithm to remove wobble arti-
facts from a video captured with a rolling shutter camera.
Their algorithm used a form of temporal super-resolution to
infer the high frequency motion of the camera from low-
frequency optical flow. They also extended their algorithm
to use an affine motion model and to model low frequency
independent motion. Forssen et al. [9] proposed an algorithm
for rectifying video sequences from rolling shutter cameras
without the use of camera specific parameters or calibration.
[9] modeled the rolling shutter distortions as being caused
by the 3D motion of the camera. Gu et al.[10] proposed a
new readout architecture for CMOS image sensors, called
coded rolling shutter. By controlling the readout timing and
exposure per row, [10] demonstrated several coding schemes
that could be applied within one frame and their applications.
[10] claims the required controls can be readily implemented
in standard CMOS image sensors. The coded rolling shutter
achieves benefits such as less skew or higher temporal
resolution or higher dynamic range, at the cost of reduced

vertical resolution. Ait-Aider et al.[1] proposed an algorithm
to recover pose and velocity from a single view of a moving
rigid object based on feature point correspondences. They
used the fact that with the combined effect of rolling shutter
and object motion, straight lines are distorted to curves
as they get imaged with a rolling shutter camera. Wilburn
et al. [23] proposed a technique to capture multi-thousand
frames-per-second (fps) video sequences using a dense array
of CMOS rolling shutter sensors. Compensation for rolling
shutter distortion is obtained by taking scanlines that were
captured at the same time from different camera views and
then stacking them into one distortion free image. Liang et
al. [8] purposed a method to compensate for rolling shutter
distortion based on global and local motion vector detection.
“The block matching technique is similar to that of MPEG-
4 where we cannot but sacrifice the accuracy of motion
vector to decrease the computation time. Excessive compu-
tational load due to the smoothing operation to compensate
for the inaccuracy of motion vector is not acceptable in
mobile devices” [6]. [5] proposed 2 methods for removing
the spatio-temporal distortions in video sequences caused
by rolling shutter cameras. The first method involved the
use of active illumination which limits the applicability of
the approach. The second method involved computationally
intensive optical flow based warping. [6] also proposed post
image processing scheme also based multi-frame optical flow
methods. Meingast et al. [14] presented a rolling shutter cam-
era projection model and show how it is affected by different
types of camera motion and present a technique to recover
the distorted image. However, correcting the distorted image
using this method requires accurate measurement of the 3-
D position and movement of the object and camera, which
is not a simple task in practice [8]. Nicklin et al. [15]
present a rolling shutter compensation algorithm for a robotic
application where they use the sensor values from the robot
along with knowledge of camera timing to calculate the effect
of the robot’s movements on the image. This information is
then used to remove the rolling shutter distortion from the
image.

The Foundry 1 has developed a plug-in that will remove
rolling shutter distortion from video footage. Their approach
also uses computationally expensive local motion estimation
to correct parts of the image that are moving relative to
the camera, even if they are moving at different speeds
or directions. In summary, many of the previous works on
rolling shutter distortion correction have been related to com-
putationally expensive global and local motion estimation
using multiple input image frames to model and reverse the
geometric distortion caused by the rolling shutter sensor.
However the processing time of these algorithms makes them
not suitable for a real time face recognition system.

This paper proposes a fully automated post image pro-
cessing scheme based on facial feature detection to correct
only the horizontal temporal shear or rolling shutter dis-
tortion from a single image or individual frames from a

1www.thefoundry.co.uk



video sequence with low computational complexity. While
our approach does not explicitly account for any vertical
movement in the scene we feel that our approach is still
valid for situations such as a PTZ unit panning across a
scene while tracking a target or a security camera scanning
across a parking lot, and is able to run in real time with
minimal additional computational complexity added to our
facial recognition pipeline.

III. ROLLING SHUTTER SENSOR DISTORTION MODEL

In this section we will describe the rolling shutter sensor
model used for our analysis of the temporal shear distortion
caused by the rolling shutter architecture.

CMOS sensors can not hold and store all the pixels at the
same time. Each scanline is exposed, sampled, and stored
in sequence and then immediately sent over the data bus.
We define our sensor array as a (rows ⇤ columns) pixel
array with the origin located at the top left corner of the
sensor. Chun et al. [6] presents a rolling shutter sensor model
where the skew angle ✓ can be computed using knowledge
of relative velocity of the object and the camera in the x�
direction. [6] defines a motion vector defined by (V

x

, 0). It
will then take (image rows⇤⌧ ) to read out the entire pixel
array, where ⌧ is the time to read out a single row. Since
the y � coordinate of the nth now is (y + n � 1) then
the time it takes the sensor to reach the nth row is given by
(y+n�1)⇤⌧ . Furthermore, since the row is also moving with
relative velocity (V

x

) the displacement of the nth row in the
x� direction can be calculated by the following equation:

D(x, k) = V

x

⌧(y + n� 1) (1)

Fig. 2. Distortion due to horizontal motion; a rectangular object is distorted
into a parallelogram due to rolling shutter distortion

As shown in Figure 2 a rectangular area is distorted
into a parallelogram, where the skew angle ✓ is formed
by the side of the parallelogram and the y � axis. [6]
then defines maximum horizontal skew, D

x,max

, as the
difference between the displacement of the first row and the
displacement of the last row as shown below in equations
(2) and (3).
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However, under our assumption of rectilinear and global
motion the skew distortion due to the rolling shutter can

be modeled by an affine or a shear transformation from non-
skewed space (x, y, 1) to skewed space (x0, y0, 1). For a shear
parallel to the x axis is defined as x

0 = x + ky and y

0 = y;
the shear matrix, applied to column vectors, is:
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where (k) is the shearing parameter. To recover the image,
since we are assuming a constant velocity vector V

x

, we
will calculate the shearing parameter (k) by determining the
x�displacement between 2 points in the image at different
y � locations that should be aligned or have the same x�
location in a non-distorted image.

k = x

displacement(pt1&pt2)/y

difference(pt1&pt2) (5)

Once the shearing parameter k has been determined the
image can be recovered by applying the following matrix to
the column vectors of the image:
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(6)

IV. ROLLING SHUTTER DISTORTION COMPENSATION

As discussed in the previous section we are attempting
to determine the shearing parameter (k), and then apply
an affine transformation to the image to remove the image
distortion and recover the image. Our approach is based on
using the coordinates of two specific facial features and then
determining the horizontal geometric distortion based on the
average offset between these points on both sides of the
face. The two feature points that we have chosen are the
x, y coordinates of the center of the eye slightly offset to
in-between the Plica semilunaris and the inner Canthus of
the eye. The second feature point is slightly offset from the
Alar-side wall located on the side of the nose. As shown
in Figure 3 these two points should have approximately the
same x-coordinates in a non-distorted image.

Fig. 3. Feature points used to calculate rolling shutter distortion

Due to the symmetry of the face even when there is some
facial roll face the average offset between the two points in



Fig. 4. Example facial images with roll and rotation. The average offset
between the feature points on both sides of face is negligible; less than 1
pixel.

an image with no shear distortion is minimal. Pose variation
is another issue for our restoration algorithm. Obviously we
cannot recover a face if the 4 defined feature points are
not visible. However, our algorithm can handle some pose
variation up to 20 degrees with minimal initial error. Both
of the images shown in Figure 4 have an initial error of less
than 1 pixel.

A. Facial Feature Detection using Image Correlation

To determine the shear parameter (k) we need to first
determine the x, y coordinates of the eyes and nostril. A
frequently used approach for feature detection is to use
correlation based technique with a model template. There are
many different types of correlation filters, and the differences
lie in how the filters are formed. Examples of correlation
filters include the Minimum Average Correlation Energy
(MACE) filters [13], the Optimal Tradeoff Filters (OTF) [18],
the Unconstrained Minimum Average Correlation Energy
(UMACE) filter [20], the Average of Synthetic Exact Filters
(ASEF) [3], the Synthetic Discriminant Functions (SFD) [11]
, the Minimum Variance Synthetic Discriminant Functions
(MVSDF) [12], and the Adaptive Average Correlation En-
ergy (AACE) [21]. To perform this task we have opted to use
an UMACE filter. The UMACE filter was selected since it is
less susceptible to over-fitting the training data, as compared
to other methods, and it performs well in a wide variety
of environmental and lighting conditions [21]. The UMACE
filter will produce a single correlation filter for a set of
training images. For feature detection, this technique will
produce a sharp correlation peak after filtering in the positive
case, from which the correct coordinates for the feature can
be derived.

B. UMACE Filter for Eye Detection

Synthesis of the Unconstrained Minimum Average Cor-
relation Energy (UMACE) filter began with cropping out
64x64 regions of the training data with the eye centered at
coordinates (32,32). For our experiments the UMACE filter
was synthesized with 1500 eye images. One advantage of
the UMACE filter over the MACE filter is that over-fitting
of the training data is avoided by averaging the training
images. After the eyes were cropped each cropped eye region
is transformed to the frequency domain using a 2D Fourier
transform. Next, the average training images and the average
of the power spectrum is calculated. The UMACE filter is
synthesized using the following formula:

h = D

�1
m (7)

where D is the average power spectrum of the N training
images, and m is the 2D Fourier transform of the average
training image.

Separate filters were designed for both the left and right
eyes. The UMACE filter is stored in its frequency domain
representation to eliminate another 2D Fourier transform
before the correlation operation is performed. Since we
are performing the correlation operation in the frequency
domain the UMACE filter had to be preprocessed by a
Hamming window to help reduce the edge effects in the
spectrum. Our experiments showed that windowing both the
filter an input image decreased the accuracy of the UMACE
eye detector. Since the UMACE filter is trained off line
it was chosen as the input that was preprocessed by the
Hamming window. Finally, after the correlation operation is
performed the global maximum or peak location is chosen
as the detected eye location in the original image with the
appropriate offsets. Figure 5 shows an example correlation
output with the detected eye centered at coordinates (18,35).

Fig. 5. Left eye localization and correlation output

C. UMACE Filter for Nose Detection
As presented in [3] one issue with using the UMACE

and other correlation filters as an eye detector is that if the
image was not cropped properly the wrong eye, nostrils,
mouth, or center of the forehead was frequently detected
as the eye. We decided to make use to that phenomenon
and use our UMACE eye filter as our nostril detector
through proper cropping of the input image. We are currently
using the left eye filter for our nostril detector. We use the
previously detected eye coordinates as input to our cropping
algorithm, and then perform the same procedure presented in
the previous section to obtain the coordinates of both the left
and right nostrils. Once we have determined the x, y location
of the nostrils we offset them to the Alar-side wall. Figure
6 shows an example correlation output with the detected
nostrils at coordinates (32,38), and (48,38).

Fig. 6. Left and right nostril localization and correlation output

D. Image Reconstruction using Facial Feature Coordinates
One difficulty with performing image reconstruction using

facial features is the issue of scale changes. In an uncon-
strained environment detected faces can range from only
30 pixels to the entire image. To overcome this difficulty
we are scaling the detected face to have a width of 150



pixels while preserving the aspect ratio when computing
the corresponding image height. This allows us to have a
common face size in which we can derive the appropriate
offsets from the location of the eye coordinates and the nose
coordinates to compute our shearing parameter (k) while
only having to train 2 UMACE filters for the left and right
eye. Once we have determined the shearing parameter (k),
we then scale the shearing parameter (k) by the factor that
we used to scale the image. We can then recover the detected
face image or the entire image, if we assume there was only
global motion in the scene, using the computed shearing
parameter (k), equation (6), and our custom interpolation
algorithm that performs a subpixel shift on each row.

To review, the outline of the purposed algorithm is given
as follows:

1) Scale the image to a width of 150 x N rows to preserve
the aspect ratio.

2) Crop and Determine x, y location of the left and right
eye.

3) Crop and Determine the x, y location left and right
nostrils.

4) Determine the shearing parameter (k) using equation
(5) and image scale factor.

5) Recover the face image or the original image using the
determined shearing parameter (k) and equation (6).

V. EXPERIMENTS AND RESULTS

A. Synthesized Data
We demonstrate results for our rolling-shutter distortion

correction algorithm on a well-known public dataset. The
FERET (Face Recognition Technology) [16] set was chosen
since the since the baseline recognition for the set using
our G96 recognition algorithm, based on the work of [17],
without any distortion is 94.09%. This allows us to demon-
strate the crippling effects rolling shutter distortion on our
face recognition system while also providing a significant
margin within which to demonstrate improvement as a result
of our methodology. The G96 recognition algorithm creates
a feature vector for each input image composed of 96 Gabor
responses fed into a multiclass Support Vector Machine
(SVM) to form a classification model. However, due to
the constraints of our SVM-based classification method, we
had use three gallery images per subject. As a result, it
was necessary to deviate from the published protocol for
FERET. The FERET subset chosen (dubbed, FERET240)
was determined by choosing the subjects for whom the full
set contained four or more images. Of these, the first three,
determined by an alphabetic sort, were utilized as gallery;
the fourth in the listing was used as probe. This subset
contained 240 subjects and 960 face chips. Subsequently,
the probe sub-set of the FERET240 set was processed using
MATLAB’s interp2 function to simulate horizontal shear
using the shearing parameters shown in Table I.

Faces were subsequently found using the OpenCV face
detector based on a well known face detection algorithm
[22]. We then applied our rolling shutter distortion correc-
tion algorithm on the detected face images. Once the face

TABLE I
RANK 1 RECOGNITION RESULTS FOR BASELINE AND ROLLING SHUTTER

CORRECTED. FERET240 BASELINE ACCURACY 94.09%.

k Raw Images Corrected Images Median Estimate (k)
0.14 87.9% 90.7% 0.15
0.20 80.7% 90.8% 0.19
0.33 52.3% 83.8% 0.30
0.40 25.7% 83.6% 0.37

was recovered, we performed eye detection again and then
used the CSU Face Identification Evaluation System [6]
to perform geometric normalization based on detected eye
coordinates, followed by Self Quotient Image (SQI) lighting
normalization as described in [19] for both the recovered
images and the distorted images.

We then ran a series of recognition tests on the synthetic
data using our G96 recognition algorithm. The recognition
results for the raw and the rolling shutter distortion corrected
images are shown in Table I.

The G96 recognition core achieves rank-1 recognition
improvement of up to 57.9% whenever there was severe
horizontal shear distortion, e.g., k=0.40, successfully demon-
strating the effectiveness of our rolling shutter distortion cor-
rection algorithm and showing that it is a worthy candidate
for improvements specific to long-distance face recognition
problems. To reduce the effects of extreme outliers due
to wrong parameter estimation, the median estimate for
each data set was used to evaluate the shearing parameter
estimation accuracy also shown in Table I. The majority of
errors in estimation of the shearing parameter was related to
misclassification of one of the eyes or nostrils due to stronger
responses from features of the face such as dark rimmed
glasses. It should also be noted that the face detection rate
began to fall off dramatically to  40% whenever the input
image contained severe horizontal shear distortion.

B. Real Data
In order to further validate our approach, we processed

several videos of subjects skewed by rolling shutter camera
mounted onto a tripod. In total, 4 different videos were
processed, each containing about 100 frames. The gallery
consisted of a small watchlist of 50 subjects (typical of
small-scale surveillance applications), including the subjects
in each video and 46 random subjects from the FERET240
data set. Each frame was processed with exactly the same
procedure as the above experiments. Only rolling shutter
distortion correction was applied to each frame. Examples
of the original source imagery and our recovered imagery
are given in Figure 7.

The rank 1 recognition results are given in Table II. From
this table, we see a performance improvement on real world
data. The measured shearing parameter (k) ranged from 0.20
to 0.30. Our previous experiments on the FERET240 data set
using synthetic horizontal shear show that an improvement
of 10% to 30% on data that exhibited the same amount of
distortion without any motion blur. Thus based on our com-
parable results, we conclude that our proposed approach is a
worthy candidate for improvements specific to long-distance



TABLE II
RANK 1 RECOGNITION RESULTS FOR FRAMES FROM VIDEOS FOR FOUR

DIFFERENT SUBJECTS. THE GALLERY WAS A SIMULATED

SURVEILLANCE WATCHLIST OF 50 SUBJECTS.

Subject Range (k) Raw Images Corrected Images
1 0.35-0.54 56% 75%
2 0.19-0.35 59% 69%
3 0.21-0.29 25% 32%
4 0.25-0.32 48% 52%

Fig. 7. Examples of original imagery from video (top row) and the resulting
corrected imagery for comparison (bottom row)

face recognition problems. Due to the large amount motion
blur present in the images, which also had a significant
impact on our recognition results, we feel that a complete
solution consists of performing both rolling shutter distortion
correction and deblurring before the image is sent to the
recognition core.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an algorithm for a fully
automated post image processing scheme based on facial
feature detection to correct the horizontal temporal shear or
rolling shutter distortion when obtaining images or video
sequences from a CMOS camera with a rolling shutter
whenever there is relative horizontal movement between the
sensor and the object being imaged during the integration
time of the image frame. While our approach does not
explicitly account for any vertical movement in the scene
we feel that our approach is still valid for situations such as
a PTZ unit panning across a scene while tracking a target or
a security camera scanning across a parking lot, and is able
to run in real time with minimal additional computational
complexity added to our facial recognition pipeline.

We have presented results on a controlled data set
(FERET240) to show that the rolling shutter distortion can
severely cripple our recognition system that performs with
baseline accuracy of 94.09%. We also processed a series
of videos containing real rolling shutter distortion in a
live setting. We have demonstrated a significant increase
in recognition rates as a direct result of our rolling shutter
correction techniques over the recognition results on the raw
source images.

A. Future Works
Future work includes incorporating compensation for ver-

tical movement during the image capture and using our
motion blur estimation and deblurring techniques as a pre-
processing step to the rolling shutter correction, since the
real video also exhibited a large amount of motion blur in
addition to rolling shutter distortion.
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