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Digital images are everywhere — from our cell phones to the pages of our online news sites. How
we choose to use digital image processing raises a surprising host of legal and ethical questions
that we must address. What are the ramifications of hiding data within an innocent image? Is this
an intentional security practice when used legitimately, or intentional deception? Is tampering
with an image appropriate in cases where the image might affect public behavior? Does an image
represent a crime, or is it simply a representation of a scene that has never existed? Before action
can even be taken on the basis of a questionable image, we must detect something about the
image itself. Investigators from a diverse set of fields require the best possible tools to tackle the
challenges presented by the malicious use of today’s digital image processing techniques.

In this survey, we introduce the emerging field of digital image forensics, including the main
topic areas of source camera identification, forgery detection, and steganalysis. In source camera
identification, we seek to identify the particular model of a camera, or the exact camera, that
produced an image. Forgery detection’s goal is to establish the authenticity of an image, or to
expose any potential tampering the image might have undergone. With steganalysis, the detection
of hidden data within an image is performed, with a possible attempt to recover any detected data.
Each of these components of digital image forensics is described in detail, along with a critical
analysis of the state of the art, and recommendations for the direction of future research.
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1. INTRODUCTION

With the advent of the Internet and low-price digital cameras, as well as powerful
image editing software (such as Adobe Photoshop and Illustrator, and GNU Gimp),
ordinary users have more access to the tools of digital doctoring than ever before. At
the same time our understanding of the technological, ethical, and legal implications
associated with image editing falls far behind. When such modifications are no
longer innocent image tinkerings and start implying legal threats to a society, it
becomes paramount to devise and deploy efficient and effective approaches to detect
such activities [Popescu and Farid 2005a].

Digital Image and Video Forensics research aims at uncovering and analyzing the
underlying facts about an image or video. Its main objectives comprise: tampering
detection (cloning, healing, retouching, splicing), hidden data detection/recovery,
and source identification with no prior measurement or registration of the image.

Though image manipulation is not new, its prevalence in criminal activity has
surged over the past two decades, as the necessary tools have become more readily
available, and easier to use. In the criminal justice arena, we most often find tam-
pered images in connection with child pornography cases. The 1996 Child Pornog-
raphy Prevention Act (CPPA) extended the existing federal criminal laws against
child pornography to include certain types of “virtual porn”. Notwithstanding, in
2002, the United States Supreme Court found that portions of the CPPA, being ex-
cessively broad and restrictive, violated First Amendment rights. The Court ruled
that images containing an actual minor or portions of a minor are not protected,
while computer generated images depicting a fictitious “computer generated” minor
are constitutionally protected. However, with computer graphics, it is possible to
create fake scenes visually indistinguishable from real ones [Ng and Chang 2009].
In this sense, one can apply sophisticated approaches to give more realism to the
created scenes deceiving the casual eye and conveying a criminal activity. In the
United States, a legal burden exists for “a strong showing of the photograph’s com-
petency and authenticity1” when such evidence is presented in court. In response,
tampering detection and source identification are tools to satisfy this requirement.

Data hidden within digital imagery represents a new opportunity for traditional
criminal activities. Most notably, the investigation of Juan Carlos Ramirez Abadia,
a Columbian drug trafficker arrested in Brazil in 2008, uncovered voice and text
messages hidden within images of a popular cartoon character [Herald Sun 2008;
Folha de São Paulo 2008] on the suspect’s computer. Similarly, a 2007 study2 per-
formed by Purdue University found data hiding tools on numerous computers seized
in conjunction with child pornography and financial fraud cases. While a serious
hinderance to a criminal investigation, data hiding is not a crime in itself; crimes
can be masked by its use. Thus, an investigator’s goal here is to identify and recover
any hidden evidence within suspect imagery.

In our digital age, images and videos reach us at remarkable speed and frequency.
Unfortunately, there are currently no established methodologies to verify their au-
thenticity and integrity in an automatic manner. Digital image and video forensics

1Bergner v. State, 397 N.E.2d 1012, 1016 (Ind. Ct. App. 1979).
2http://www.darkreading.com/security/encryption/showArticle.jhtml?articleID=208804788
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are still emerging research fields with important implications for ensuring the cred-
ibility of digital contents. As a consequence, on a daily basis we are faced with
numerous images and videos — and it is likely that at least a few have undergone
some level of manipulation. The implications of such tampering are only beginning
to be understood.

In the following sections, we provide a comprehensive survey of the most relevant
works with respect to this exciting new field of the unseen in digital imagery. Sec-
tion 2 presents some brief historical remarks regarding image doctoring, including
its impact on society. Section 3 is a thorough tour of the vision techniques for the
forensics of the unseen, covering all the main areas of interest. Finally, in Section 4,
we wrap up the survey and present some conclusions.

Throughout this survey, we emphasize approaches that we believe to be more
applicable to forensics. Notwithstanding, most publications in this emerging field
still lack important discussions about resilience to counter-attacks, which anticipate
the existence of forensic techniques [Gloe et al. 2007]. As a result, the question of
trustworthiness of digital forensics arises, for which we try to provide some positive
insights.

2. HISTORICAL REMARKS

Image doctoring in order to represent a scene that never happened is as old as the art
of the photograph itself. Shortly after the Frenchman Nicéphore Niepce [Coe 1990]
created the first photograph in 18143, there were the first indications of doctored
photographs. Figure 1(a) depicts one of the first examples of image forgery. The
photograph, an analog composition of 30 images4, is known as The Two Ways of

Life and was created by Oscar G. Rejland in 1857. Figure 1(b) depicts another
old example of analog montage. The image is a publicity photo taken in 1899 at
Nikola Tesla’s laboratory in Colorado Springs, Colorado, where the inventor worked
before he established his Wardenclyffe laboratory on Long Island. The photo sports
a double exposure — his pose and the sparks were recorded at different times,
avoiding his electrocution [Willian J. Broad 2009].

In more recent times, we’ve seen an increase in questionable image processing.
On March 31st, 2003, the Los Angeles Times showed on its front cover an image
from photojournalist Brian Walski, in which a British soldier in Iraq stood trying
to control a crowd of civilians in a passionate manner. The problem was that
the moment depicted never happened (see Figure 2(a)). The photograph was a
composite of two different photographs merged to create a more appealing image.
The doctoring was discovered and Walski was fired.

In the 2004 presidential campaign, John Kerry’s allies were surprised by a pho-
tomontage that appeared in several newspapers purporting to show Kerry and Jane
Fonda standing together at a podium during a 1970s anti-war rally (see Figure 2(c)).
As a matter of fact, the photograph was a fake. Kerry’s picture was taken at an
anti-war rally in Mineola, NY., on June 13th, 1971 by photographer Ken Light.

3Recent studies [Marien 2006] have pointed out that the photograph was, indeed, invented concur-
rently by several researchers such as Nicphore Niepce, Louis Daguerre, Fox Talbot, and Hercule
Florence.
4Available in http://www.bradley.edu/exhibit96/about/twoways.html
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(a) Oscar Rejland’s analog composition, 1857. (b) Nikola Tesla’s laboratory, 1899.

Fig. 1. Two early examples of analog compositions.

Fonda’s picture was taken during a speech at Miami Beach, FL. in August, 1972
by photographer Owen Franken.

On April 5th, 2009, the Brazilian newspaper Folha de São Paulo published an
article [Folha de São Paulo 2009] on how the Brazilian Chief of Staff at that point,
Dilma Rousseff (a possible runner for the presidential office on the 2010 election),
has actively participated in the resistance against the military regime, such as the
planning and preparations of robberies and kidnappings. As part of the article,
the newspaper printed an alleged image of the Repression Police Internal files of
Secretary Rousseff stating that it came from the Public Archive of São Paulo, that
houses the collection of documents from that period of time. A further analysis
of the document pointed out that the object in question was a fabrication. The
photograph in the document is the result of a splicing operation from a different
grayscale image, the text is the result of a digitally-manipulated insertion, and it has
not originated from a scanning procedure of a typewritten document [Goldenstein
and Rocha 2009].

The scientific community has also been subject to forgeries. A particular case
of scientific fraud involving doctored images in a renowned scientific publication
has shed light to a problem believed to be far from the academy. In 2004, the
South Korean professor Hwang Woo-Suk and colleagues published in Science im-
portant results regarding advances in stem cell research. Less than one year later,
an investigative panel pointed out that nine out of eleven customized stem cell
colonies that Hwang had claimed to have made involved doctored photographs
of two other, authentic, colonies. Sadly, this is not a detached case. In at least
one journal5 [Pearson 2005], it is estimated that as many as 20% of the accepted
manuscripts contain figures with improper manipulations, and roughly 1% with
fraudulent manipulations [Farid 2006b; Pearson 2005].

Photo and video retouching and manipulation are also used for political purposes.
On July 10th, 2008, various major daily newspapers published a photograph of four
Iranian missiles streaking heavenward (see Figure 2(b)). Surprisingly, shortly after
the photo’s publication, a small blog provided evidence that the photograph had
been doctored. The media, left in a somewhat embarrassing position, was forced
to publish a plethora of retractions and apologies [Mike Nizza and Patrick Witty

5Journal of Cell Biology.
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2008].

(a) Montage (2003) of a British soldier in
Iraq trying to control a crowd of civilians
in a passionate manner. Credits to Brian
Walski.

(b) Iranian montage (2008) of missiles
streaking heavenward.

(c) Montage (2004) of John Kerry and Jane Fonda standing together at a
podium during a 1970s anti-war rally. Credits to Ken Light (left), Associated
Press (middle), and Owen Franken (right).

Fig. 2. Some common press media photomontages.

It has long been said that an image worth a thousand words. Recently, a study
conducted by Italian Psychologists have investigated how doctored photographs
of past public events affect memory of those events. Their results indicate that
doctored photographs of past public events can influence memory, attitudes and
behavioral intentions [Sacchi et al. 2007]. That might be one of the reasons that
several dictatorial regimes routinely wiped out of their photographic records images
of people who had fallen out of favor with the system [Farid 2006a].

According to [Wang 2009], with the availability of sophisticated and low-cost dig-
ital video cameras and the convenience of video sharing websites such as YouTube,
digital videos are playing a more important role in our daily-life. However, we can
not take the authenticity of such videos for granted.

Although video tampering is relatively harder to perform than image tampering,
it is not uncommon to find some dubious video editing cases in real life.

Video tampering can be as simple as inserting advertisements during broadcasting
of sporting events or as complex as removing people digitally from a video. For
instance, in December 2000, the CBS emblem on the frame depicted in Figure 3(a)
of a live video broadcast was inserted so as to conceal the NBC emblem that was
on display in the background.

ACM Journal Name, Vol. V, No. N, M 2009.

Accepted paper - ACM Computing Surveys Rocha et al., to appear 2010

ACM C
SUR



6 · Rocha et al.

Figure 3(b) depicts the final screen shot of a Republican National Committee
political video of a U.S. soldier watching a television from December 2005. In this
last shot, we read “Our soldiers are watching and our enemies are too”. However,
this video was digitally altered. It is an edition of another video where the soldier
was watching the movie How the Grinch Stole Christmas.

Figure 3(c) depicts a Russian talk show in the fall of 2007. The video frames
the political analyst Mikhail Delyagin making some sharp remarks about president
Vladimir Putin. Later, when the program was broadcast, the analyst and his com-
ments were digitally removed from the show. However, the technicians neglected
to erase his hand and legs in one shot [Wang 2009].

(a) CBS broadcast, December 2000.

Original video

What was broadcast

(b) RNC political propaganda, December 2005.

Misterious legs and hand

(c) Russian talk show in 2007. Prominent po-
litical analyst, Mikhail Delyagin, was digitally
erased from the show except his hand and legs.

Fig. 3. Some video tampering examples.

3. VISION TECHNIQUES FOR THE UNSEEN

In this section, we survey many of the state-of-the-art approaches for image and
video forensics, pointing out their advantages and limitations. In order to alleviate
confusion with symbols that are used in different contexts by different works, we
ACM Journal Name, Vol. V, No. N, M 2009.

Accepted paper - ACM Computing Surveys Rocha et al., to appear 2010

ACM C
SUR



Vision of the Unseen: Current Trends and Challenges in Digital Image and Video Forensics · 7

have changed nearly all of the symbols used throughout this section to resolve any
ambiguity.

3.1 Image manipulation techniques

In the forensic point of view, it is paramount to distinguish simple image enhance-
ments from image doctoring. We note that any image operation can be used to
deceive the viewer; the distinction comes down to the intent of the person perform-
ing the image editing. Despite this burden, we generally find common operations
falling into two categories.

On one extreme, we define image enhancements as operations performed in one
image with the intention to improve its visibility. There is no local manipulation
or pixel combination. Some image operations in this category are contrast and
brightness adjustments, gamma correction, scaling, and rotation, among others. On
the other extreme, image tampering operations are those used with the intention
to deceive the viewer at some level. In these operations, normally one performs
localized image operations such as pixel combinations and tweaks, copy/paste, and
composition with other images. In between these extremes, there are some image
operations that by themselves are not considered forgery operations but might be
combined for such objective. Image sharpening, blurring, and compression are some
of such operations.

Some common image manipulations with the intention of deceiving a viewer
include:

(1) Composition or splicing. It consists of the composition (merging) of an
image Ic using parts of one or more parts of images I1 . . . Ik. For example, with
this approach, a politician in I1 can be moved beside a person from I2, without
even knowing such person.

(2) Retouching, healing, cloning. These approaches consist of the alteration
of parts of an image or video using parts or properties of the same image or
video. Using such techniques, one can make a person 10 or 20 years younger
(retouching and healing) or even change a crime scene eliminating a person in
a photograph (cloning).

(3) Content embedding or Steganography. The goal of steganography is to
convey a message by hiding it in a cover media (for the work considered here,
the cover media consists of an image or video) without affecting the cover’s
statistical properties, which might be used for detection.

Figure 4 depicts some possible image manipulations. From the original image
(top left), we clone several small parts of the same image in order to eliminate
some parts of it (for example, the two people standing in front of the hills). Then
we can use a process of smoothing to feather edges and make the cloning less
noticeable. We can use this image as a host for another image (bottom left) and
then create a composite. After the combination, we can use healing operations to
adjust brightness, contrast, and illumination. This toy example was created in five
minutes using the open-source software Gimp.

Sometimes the edge between image enhancing and faking is so thin that depend-
ing on the context, only the addition of text to a scene may fool the viewer. Figure 5
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Cloning
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Splicing

Healing

Edge’s smoothing

Fig. 4. Toy example of possible image manipulations, including cloning, edge smoothing, splicing,
and healing.

depicts one example of two photographs presented by Colin Powell at the United
Nations in 2003. The actual images are low-resolution, muddy aerial surveillance
photographs of buildings and vehicles on the ground in Iraq. They were used to
justify a war. Note that the text addition in this case was enough to mislead the
United Nations [Errol Morris 2008]. However, many other simple image operations
exist that many be considered purely innocuous, such as red eye removal, contrast
enhancement, lossless compression and affine transformation. With these examples,
no visual information representing objects in the image is lost, and they may be
treated as conceptually invertible.

Sanitization of Ammunition Depot at Taji

Fig. 5. Photographs presented by Colin Powell at the United Nations in 2003. (U.S. Department
of State)
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3.2 Important questions

In general, in digital image and video forensics, given an input digital image, for
instance, one wants to answer the following important questions [Sencar and Memon
2008]:

• What imaging equipment produced this image?
− Was this image acquired from camera vendor Cv,1 or Cv,2?
− Was this image originally acquired with camera C as claimed?

• What is the processing history of this image?
− Is this image an original image or has it been created from the composition

(splicing) of other images?
− Does this image represent a real moment in time or has it been tampered with

to deceive the viewer?
− Which part of this image has undergone manipulation and to what extent?

What are the impacts of such modifications?
• Does this image conceal any hidden content?
− Which algorithm or software has been used to perform the hiding?
− Is it possible to recover the hidden content?

It is worth noting that most techniques for digital images and video are blind
and passive. The approach is blind when it does not use the original content for
the analysis. The approach is passive when it does not use any watermarking-based
solution for the analysis.

Although digital watermarking can be used in some situations, the vast majority
of digital contents do not have any digital watermarking. Any watermarking-based
solution would require an implementation directly in the acquisition sensor, making
its use restrictive. Furthermore, such approaches might lead to quality loss due to
the markings [Ng et al. 2006; Sencar and Memon 2008].

We break up the image and video forensics approaches proposed in the literature
into three categories, discussed in the next sections:

(1) Camera sensor fingerprinting or source identification;
(2) Image and video tampering detection;
(3) Image and video hidden content detection/recovery.

3.3 Source Camera Identification

With Source Camera Identification, we are interested in identifying the data ac-
quisition device that generated a given image for forensics purposes [Swaminathan
et al. 2009]. Source camera identification may be broken into two classes: device
class identification and specific device identification. In general, source camera
identification relies on the underlying characteristics of the components of digital
cameras. These characteristics may take the form of image artifacts, distortions,
and statistical properties of the underlying data. These characteristics are usually
imperceptible to the human eye, but visible effects can also contribute clues for
identification.

In general, we treat digital image acquisition as a pipeline of stages. Figure 6
illustrates the flow of data, with light initially passing through a lens and possibly
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Lens Filters Color Filter Array Sensor Camera Processing

Fig. 6. The image acquisition pipeline.

through a filter (to remove infrared or ultra-violet light, for example). If the camera
supports color, a Color Filter Array (CFA) is usually placed over the sensor to ac-
commodate different color channels. Popular CFA configurations include the RGB
Bayer Pattern (most common), and the CMYK subtractive color model (available
on some higher end sensors). In a standard consumer grade camera, the sensor will
be a silicon CCD or CMOS. The image processing will take place in logic designed
by individual camera or chipset manufacturers within the camera itself. Each of
these pipeline components induce anomalies in images that can be used to identify
a source camera.

3.3.1 Device Class Identification. The goal of device class identification is to
identify the model and/or manufacturer of the device that produced the image in
question. For digital cameras, we consider the image acquisition pipeline, where
the lens, size of the sensor, choice of CFA, and demosaicing and color processing
algorithms found in the camera processing logic to provide features. It is important
to note that many manufacturers use the same components, thus, the discriminatory
power of some techniques may be limited. Many of the techniques that we will
discuss here treat the underlying camera characteristics as features for machine
learning, which separates images into particular camera classes. Thus, we can treat
device class identification as a traditional classification problem. Support Vector
Machines (SVM), shown in Figure 7, is a popular binary classifier for device class
separation. It can also be extended for multi-class classification. In this section, we
will review the relevant techniques used to identify device classes.

From the lens, radial distortions can be introduced immediately into the image
acquisition pipeline. Radial distortion is commonly found with inexpensive cam-
eras/lenses. Choi et al. [2006] introduce a method to extract aberrations from
images, which are then treated as features for classification. As described in [Choi
et al. 2006], radial distortion can be modeled through the second order for reason-
able accuracy:

ru = rd + d1r
3
d + d2r

5
d (1)

where d1 and d2 are the first and second degree distortion parameters, and ru and rd

are the undistorted radius and the distorted radius. The radius is simply the radial
distance

�
x2 + y2 of some point (x, y) from the center of the distortion (typically

the center of the image). The parameters d1 and d2 are treated as features for
an SVM learning system. These features, however, are not used in [Choi et al.
2006] by themselves — they are combined with the 34 image features introduced
in [Kharrazi et al. 2004] (described below), in a fusion approach. Thus, the utility
of this approach may be seen as a supplement to other, stronger features derived
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Fig. 7. An example of binary camera classification with SVM. A feature vector is constructed
out of the calculated features for a given image. Training sets are built out of a collection of
feature vectors for each camera class. The machine learning is used for classification of images
with unknown sources.

from elsewhere in the acquisition pipeline. The average accuracy of this technique
is reported to be about 91% for experiments performed on three different cameras
from different manufacturers.

Image color features exist as artifacts induced by the CFA and demosaicing al-
gorithm of a color camera, and represent a rich feature set for machine learning
based classification. Kharrazi et al. [2004] define a set of image color features that
are shown to be accurate for device class identification using SVMs. Average pixel
values, RGB pairs correlation, neighbor distribution center of mass, RGB pairs
energy ratio, and wavelet domain statistics are all used as features. Further, im-
age quality features are also used to supplement the color features in [Kharrazi
et al. 2004]. Pixel difference based measures (including mean square error, mean
absolute error, and modified infinity norm), correlation based measures (including
normalized cross correlation, and the Czekonowksi correlation, described below),
and spectral distance based measures (including spectral phase and magnitude er-
rors) are all used. For binary classification, Kharrazi et al. [2004] report between
90.74% and 96.08% prediction accuracy. For multi-classification considering 5 cam-
eras, prediction accuracy between 78.71% and 95.24% is reported. These results
were confirmed in [Tsai and Wu 2006].

The CFA itself as a provider of features for classification has been studied in [Ce-
liktutan et al. 2005]. The motivation for using just the CFA and its associated
demosaicing algorithm is that proprietary demosaicing algorithms leave correla-
tions across adjacent bit planes of the images. Celiktutan et al. [2005] define a set
of similarity measures {m1, m2, m3}, with kNN and SVM used for classification.

The first approach is a binary similarity measure. A stencil function is first
ACM Journal Name, Vol. V, No. N, M 2009.
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defined

δn
c (a, b) =





1 if pc = 0 pn = 0
2 if pc = 0 pn = 1
3 if pc = 1 pn = 0
4 if pc = 1 pn = 1



 (2)

where b is a bit plane (image matrix), and a indicates one of four agreement scores:
1, 2, 3, and 4. The subscript c defines some central pixel, and superscript n denotes
one of the four possible neighbor pixels.

We sum δn
c (a, b) over its four neighbors (n runs over its East, West, South, and

North neighbors), as well as over all the pixels (c runs over the M × N pixels).
After the summations the sub- and superscripts can be omitted.

Before feature generation, the agreement scores are normalized to obtain a PDF:

Ab
a = δ(a, b)/

�

a

δ(a, b). (3)

Based on this four-bin histograms, we are able to define the binary Kullback-
Leibler distance as

m1 = −
4�

n=1

A7
n log

A7
n

A8
n

(4)

where A is the normalized agreement score.
The second approach is also a binary similarity measure, but uses a neighborhood

weighting mask as opposed to a stencil function. Each binary image yields a 512-
bin histogram computed using the weighted neighborhood. Each score is computed
with the following function:

S =
7�

i=0

pi2i (5)

The neighborhood weighting mask applied to a pixel pi by the above function is:

1 2 4
128 256 8
64 32 16

The final binary similarity is computed based on the absolute difference between
the nth histogram bin in the 7th bit plane and same of the 8th after normalization:

m2 =
511�

n=0

|S7
n − S8

n| (6)

Quality measures, as mentioned earlier, make excellent features for classification.
The Czenakowski distance is a popular feature for CFA identification because it
is able to compare vectors with non-negative components — exactly what we find
in color images. The third feature of [Celiktutan et al. 2005] is the Czenakowski
distance defined as:

m3 =
1

MN

M−1�

i=0

N−1�

j=0

�
1−

2
�3

k=1 min(Ik(i, j), Îk(i, j))
�3

k=1(Ik(i, j) + Îk(i, j))

�
(7)
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Denoising is necessary for calculating this distance metric. Ik(i, j) represents the
(i, j)th pixel of the kth band of a color image, with Îk being the denoised version.
With these three similarity measures the authors of [Celiktutan et al. 2005] generate
108 binary similarity features and 10 image quality similarity features per image.
The best reported performance for this technique (using SVM for classification)
is near 100% accuracy for the two camera classification problem, 95% accuracy
for the three camera classification problem, and 62.3% accuracy for a six camera
classification problem.

A major weakness of the approaches described thus far is a lack of rigor in the
analysis of the experimental results reported, compared with other security related
vision and pattern recognition fields such as biometrics and tracking. All report
raw classification results for only a handful of different cameras. Thus, it is often
difficult to determine how well these techniques perform in practice. This is a
common problem of this sub-field in general. By varying the SVM margin after
classification, a set of marginal distances can be used to build a Receiver Operator
Characteristic curve. From this curve, a more thorough understanding of the False
Reject Rate (FRR) and False Accept Rate (FAR) can be gained. Also of interest
is more comprehensive testing beyond limited camera classes. For a more accurate
picture of the FAR, a statistically large sampling of images from cameras outside
the known camera classes should be submitted to a system. None of the papers
surveyed attempted this experiment. Further, the techniques introduced thus far
are all shown to succeed on images with low levels of JPEG compression. How well
these techniques work with high levels of compression has yet to be shown. Not all
work suffers from a dearth of analysis, however.

The Expectation/Maximization algorithm [Popescu 2004] is a powerful technique
for identifying demosaicing algorithms (and even more useful for forgery detection,
described in Section 3.4.4), and does not rely on classification techniques directly,
but can take advantage of them in extensions to the base work ([Bayram et al.
2005] , [Bayram et al. 2006]). The motivating assumption of the EM algorithm
is that rows and columns of interpolated images are likely to be correlated with
their neighbors. Kernels of a specified size (3 × 3, 4 × 4, and 5 × 5 are popular
choices) provide this neighborhood information to the algorithm. The algorithm
itself can be broken into two steps. In the Expectation (E) step, the probability
of each sample belonging to a particular model is estimated. In the Maximization

(M) step, the specific form of the correlations between samples is estimated. Both
steps are iterated till convergence.

In detail, we can assume that each sample belongs to one of two models. If a
sample is linearly correlated with its neighbors, it belongs to M1. If a sample is
not correlated with its neighbors, it belongs to M2. The linear correlation function
is defined as:

f(x, y) =
k�

u,v=−k

αu,vf(x + u, y + v) +N (x, y) (8)

In this linear model, f(·, ·) is a color channel (R, G, or B) from a demosaiced image,
k is an integer, and N (x, y) represents independent, identically distributed samples
drawn from a Gaussian distribution with zero mean and unknown variance. �α is a
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vector of linear coefficients that express the correlations, with α0,0 = 0.
The E step estimates the probability of each sample belonging toM1 using Bayes’

rule:

Pr{f(x, y) ∈M1|f(x, y)} =
Pr{f(x, y)|f(x, y) ∈M1}Pr{f(x, y) ∈M1}�2
i=1 Pr{f(x, y)|f(x, y) ∈Mi}Pr{f(x, y) ∈Mi}

(9)
Pr{f(x, y) ∈ M1} and Pr{f(x, y) ∈ M2} are prior probabilities assumed to be
equal to 1/2. If we assume a sample f(x, y) is generated by M1, the probability of
this is:

Pr{f(x, y)|f(x, y) ∈M1} =
1

σ
√

2π

»
− 1

2σ2

„
f(x, y)−

kX

u,v=−k

αu,vf(x+u, y +v)

«2–
. (10)

We estimate the variance σ2 in the M step. M2 is assumed to have a uniform
distribution.

The M step computes an estimate of �α using weighted least squares (in the first
round of the E step, �α is chosen randomly):

E(�α) =
�

x,y

w(x, y)
�

f(x, y)−
k�

u,v=−k

αu,vf(x + u, y + v)
�2

(11)

The weights w(x, y) are equivalent to Pr{f(x, y) ∈M1|f(x, y)}. This error function
is minimized via a system of linear equations before yielding its estimate. Both the
steps are executed until a stable �α results. The final result maximizes the likelihood
of observed samples.

Popescu [2004] asserts that the probability maps generated by the EM algorithm
can be used to determine which demosaicing algorithm a particular camera is using.
These probabilities tend to cluster — thus, an external machine learning algorithm
for classification is not necessary. For a test using eight different demosaicing algo-
rithms [Popescu 2004], the EM algorithm achieves an average classification accuracy
of 97%. In the worst case presented (3 × 3 median filter vs. variable number of
gradients), the algorithm achieves an accuracy of 87%. Several extensions to the
EM algorithm have been proposed. Bayram et al. [2005] apply the EM algorithm
to a camera identification problem, using SVM to classify the probability maps.
Bayram et al. [2005] report success as high as 96.43% for the binary classification
problem, and 89.28% for the multi-class problem. Bayram et al. [2006] introduce
better detection of interpolation artifacts in smooth images as a feature to fuse with
the standard EM results. For a three camera identification problem, Bayram et al.
[2006] achieve results as high as 97.74% classification accuracy. Other variations
include the use of modeling error, instead of interpolation filter coefficients [Long
and Huang 2006], and the computation of error based on the assumption of CFA
patterns in an image [Swaminathan et al. 2006].

3.3.2 Specific Device Identification. The goal of specific device identification is
to identify the exact device that produced the image in question. For specific
device identification, we require more detail beyond what we’ve discussed so far
with source model identification. Features in this case may be derived from:

• hardware and component imperfections, defects, and faults
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Fig. 8. Dead pixels (circled in yellow) present in an image from a thermal surveillance camera.

• effects of manufacturing process, environment, operating conditions

• aberrations produced by a lens, noisy sensor, dust on the lens

It is important to note that these artifacts may be temporal by nature, and thus,
not reliable in certain circumstances.

Early work [K. Kurosawa and Saitoh 1999] in imaging sensor imperfections for
specific device identification focused on detecting fixed pattern noise caused by dark

current in digital video cameras. Dark current is the rate that electrons accumulate
in each pixel due to thermal action. This thermal energy is found within inverse
pin junctions of the sensor, and is independent of light falling on it. In their work,
the authors just intensify the fixed pattern noise components while proposing their
detection as local pixel defects. The work, as presented in [K. Kurosawa and Saitoh
1999], provides no quantitative analysis, and thus, the actual utility of dark currents
cannot be assessed.

A more comprehensive use of sensor imperfections is presented in [Geradts et al.
2001], where “hot pixels,” cold/dead pixels, pixel traps, and cluster defects are
used for detection. Hot pixels are individual pixels on the sensor with higher than
normal charge leakage. Cold or dead pixels (Figure 8) are pixels where no charge
ever registers. Pixel traps are an interference with the charge transfer process and
results in either a partial or whole bad line, that is either all white or all dark. While
these features are compelling for identifying an individual sensor, one immediate
problem with defective pixels that we can think of is that there are cameras that
eliminate them by post-processing their images on-board. Geradts et al. [2001] also
do not provide a quantitative analysis that we can use to assess the effectiveness
of defective pixels analysis. Thus, we turn to more extensive work for reliable
forensics.
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Pattern Noise

Photo Response

Non-Uniformity Noise
Fixed Pattern Noise

Pixel Non-Uniformity
Low-frequency 

Defects 

Fig. 9. Hierarchy of Pattern Noise.

Lukas et al. [2006] present a more formal quantification and analysis of sensor
noise for identification, with work that is the strongest for this type of forensics.
Referring to the hierarchy of sensor noise in Figure 9, we see two main types of
pattern noise: fixed pattern noise and photo-response non-uniformity noise. Fixed
pattern noise (FPN) is caused by the dark currents described above, and is not
considered in [Lukas et al. 2006]. The authors state that the reason is FPN primarily
refers to pixel-to-pixel differences when the sensor array is not exposed to light.
Basically, FPN is an additive noise, which depends on exposure and temperature.
It can be suppressed on-the-fly by some in-camera devices by subtracting a dark
frame from the image right after its capture.

Photo-response non-uniformity noise (PRNU) is primarily caused by pixel non-
uniformity noise (PNU). PNU is defined as different sensitivity various pixels have
to light caused by the inconsistencies of the sensor manufacturing process. Low
frequency defects are caused by light refraction on particles on or near the camera,
optical surfaces, and zoom settings. Lukas et al. [2006] do not consider this type
of noise, but Dirik et al. [2008] do. The temporal nature of such particle artifacts
brings into question their reliability - except when dealing with short sequences of
images from the same period.

To use PNU as a characteristic for sensor fingerprinting, the nature of the noise
must first be isolated. An image signal µ exhibits properties of a white noise signal
with an attenuated high frequency band. The attenuation is attributed to the low-
pass character of the CFA algorithm (which, in this case, we are not interested in).
If a large portion of the image is saturated (pixel values set to 255), it will not be
possible to separate the PNU from the image signal. In a forensic scenario, we will
likely not have a blank reference image that will easily allow us to gather the PNU
characteristics. Thus, the first stage of the PNU camera identification algorithm
is to establish a reference pattern Pc, which is an approximation to the PNU. The
approximation, Ī(k) is built from the average of K different images of a uniformly
lit scene k = 1, · · · , K:

Ī(k) =
1
K

K�

k=1

Ik (12)
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The approximation can be optimized to suppress the scene content by applying
a de-noising filter λ, and averaging the noise residuals ξ(k) instead of the original
images I(k):

ξ̄(k) = (Ī(k) − λ(I(k)))/K (13)

Lukas et al. [2006] report that a wavelet-based denoising filter works the best.
To determine if an image belongs to a particular known camera, a correlation ρc

is simply calculated between the noise residual of the image in question ξ = I−λ(I)
and the reference pattern Pc (a bar above the symbol represents mean):

ρc(I) =
(ξ − ξ̄) · (Pc − P̄c)
�ξ − ξ̄��Pc − P̄c�

(14)

The results of [Lukas et al. 2006] are expressed in terms of FRR and FAR (proper
ROC curves are not provided, however), with very low FRR (between 5.75× 10−11

and 1.87 × 10−3) reported when a FAR of 10−3 is set for an experiment with
images from nine different cameras. Excellent correlations are shown for all tests,
indicating the power this technique has for digital image forensics. An enhancement
to this work has been proposed by [Sutcu et al. 2007], with a technique to fuse
the demosaicing characteristics of a camera described earlier with the PNU noise.
Performance is enhanced by as much as 17% in that work over the base PNU
classification accuracy.

One drawback of PRNU noise when used for camera and sensor fingerprinting
is that its detection is sensitive to appropriate synchronization. A slight scaling
or cropping operation on the image can lead to an unsuccessful detection [Goljan
and Fridrich 2008]. Geometrical transformations (e.g., scaling and rotation) cause
desynchronization and introduce distortions due to resampling.

In this regard, Goljan and Fridrich [2008] have extended previous camera iden-
tification technology based on sensor noise [Lukas et al. 2006] to a more general
setting when the image under investigation has undergone cropping and scaling
operations. Prior to perform the reference pattern comparisons, the authors deploy
a brute force search to find the scaling factor of the analyzed image. Thereafter,
the authors use the peak to correlation (PCE) of the normalized cross-correlation
(NCC) surface between the reference patterns (the resized image under investigation
and the camera reference pattern) in order to estimate the cropping parameters.
This is performed till a stopping criteria is achieved. The authors report good re-
sults for reliable camera identification for images linearly scaled down by a factor
of 0.5 or more and images with 90% or more cropped away.

Although Goljan and Fridrich [2008]’s work is important towards a more reliable
camera identification process, it is worth noting that: (1) the quality of the response
depends on the image content and subsequent JPEG compression; and (2) it is
computationally intensive. In this context, there is room for research. For instance,
one could think of a more efficient way of estimating the cropping and scaling
parameters other than brute force and also in how to perform the comparisons of
the reference patterns. The authors, themselves, propose at the very end of their
work, that a hierarchical search could be employed to achieve a 4 times reduction
in search time [Goljan and Fridrich 2008].
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3.3.3 Specific Device Identification from Analog Media. What do we do if in-
stead of a digital object, only its analog form is available? One example is forged
currency, when a digital scan of a real banknote is printed on a printer [Goljan
et al. 2008]. Does the sensor pattern noise fingerprint survive the digital-to-analog
conversion? Goljan et al. [2008] have proposed to investigate these questions.

As discussed earlier in this paper, sensor noise-based signatures (namely PRNU)
need proper synchronization to work. In [Goljan et al. 2008], the authors discuss
approaches to circumvent the most influential factors in identifying the sensor from
a printed picture: (1) the accuracy of the angular alignment when scanning, (2)
printing quality, (3) paper quality, and (4) size of the printed picture. Geometrical
transformations are the most difficult problem to address.

To tackle the geometrical transformations problem, Goljan et al. [2008] deploy the
same technique used in [Goljan and Fridrich 2008] to find the cropping and scaling
parameters on the scanned object of investigation. With these parameters, the
authors modify the object in question and compare it to a set of reference patterns.
The one signaling the highest response is considered the reference pattern of the
camera that acquired the image. The reported results show that the PRNU camera
signature is robust with respect to high quality printing and scanning. However,
for regular paper prints identification there is still room for research.

3.3.4 Specific Device Identification — Camcorders. Since digital camcorders
use, in essence, the same capturing imaging sensors, another valid question that
arises is whether or not we can correctly identify them. According to [Chen et al.
2007], determining if two videoclips come from the same source could be an impor-
tant tool for fighting motion picture piracy. Approaches limited to identifying only
the camcorder model could be easily extended from previous work such as [Kharrazi
et al. 2004; Popescu 2004; Popescu and Farid 2005a; 2005b; Swaminathan et al.
2006], where the authors propose to identify different traces of image processing
unique to a specific camcorder.

Recently, Chen et al. [2007] have investigated the PRNU noise signatures pro-
posed in [Lukas et al. 2006] to differentiate specific camcorders (e.g., same brand
and model). According to the authors, the approach discussed in [Lukas et al.
2006] cannot be used directly because the spatial resolution of the video is usually
smaller than typical still images and each frame can be subjected to different com-
pression levels. First, the authors estimate the PRNU noise from the video clip
taking advantage of its temporal resolution using a maximum likelihood estima-
tor. Afterwards, the PRNU signature is filtered to eliminate blockiness artifacts
present due to different video coding formats (lossy compression). Given two fil-
tered PRNU signatures, they are processed using normalized cross-correlation and
the peak to correlation energy coefficient is calculated over the NCC surface to
establish whether or not they have a common origin.

The authors report that about 40 seconds of video is enough for a reliable deci-
sion. However, if the video is low quality, more frames need to be used. Research
opportunities are available when dealing with larger compression and decreasing
spatial resolution videoclips. For instance, for some “Internet quality” videos in LP
resolution (264 × 352, 150Kb/sec. bit-rate) a 10-minute video sequence would be
required for signature estimation.
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Finally, it is worth mentioning one limitation of the method. For simplification
purposes, the authors have assumed all frames in a video clip have the same variance
(distortion caused by independent noise components). The authors themselves
point out that some video coding schemes (e.g., DVD) use variable bit rate coding
leading to almost constant picture quality, while others (e.g., DTV) use constant
bit rate coding leading to variable quality. Therefore, the adaptive estimation of
the variance could give better results and it is worth investigating.

3.3.5 Counter Forensic Techniques Against Camera Identification. Like any sub-
field of digital forensics, camera identification is susceptible to counter forensic
techniques. Gloe et al. [2007] introduce two techniques for manipulating the image
source identification of [Lukas et al. 2006]. This work makes the observation that
applying the wavelet denoising filter of [Lukas et al. 2006] is not sufficient for cre-
ating a quality image. Thus, a different method, flatfielding, is applied to estimate
the FPN and the PRNU. FPN is a signal independent additive noise source, while
PRNU is a signal dependent multiplicative noise source. For the FPN estimate, a
dark frame Idark estimate is created by averaging J images Idark taken in the dark
(with the lens cap on, for instance):

Idark estimate =
1
J

�

J

Idark (15)

For the PRNU estimate, K images of a homogeneously illuminated scene Ilight with
Idark estimate subtracted are required. To calculate the flatfield frame Iflatfield,
these images are averaged:

Iflatfield =
1
K

�

K

(Ilight − Idark estimate) (16)

With an estimate of the FPN and PRNU of a camera, a nefarious individual
can suppress the noise characteristics of an image from a particular camera to
avoid identification in some (not all) cases. An image Î with suppressed noise
characteristics is simply created by noise minimization:

Î =
I − Idark estimate

Iflatfield
(17)

The authors of [Gloe et al. 2007] note that perfect flatfielding is, of course, not
achievable, as an immense number of parameters (exposure time, shutter speed, and
ISO speed) would be needed to generate Idark estimate and Iflatfield. Thus, they
fix upon a single parameter set for their experiments. Results for this technique
are reported for RAW and TIFF images. While powerful, flatfielding is not able
to prevent identification in all images it is applied to. Figure 8 in [Gloe et al.
2007] appears to depict many instances of a correctly identified camera after the
application of flatfielding, with the authors stating “correct identification of image
origin was successfully prevented only for a subset of images”. This subset is not
identified.

Simply reducing the impact of camera identification by PRNU is not the only
thing one can do with flatfielding. After the above technique has been applied, a
noise pattern from a different camera can be added with inverse flatfielding. An
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image Îforge with forged noise characteristics is created from the pre-computed
flatfielding information from any desired camera:

Îforge = Î · Iflatfield forge + Idark forge (18)

Experiments for this technique are also presented in [Gloe et al. 2007], where images
from a Canon Powershot S70 are altered to appear to be from a Canon Powershot
S45. While most correlation coefficients mimic the S45, some still remain charac-
teristic of the S70. The counter forensic techniques of [Gloe et al. 2007] are indeed
useful in many circumstances, but are shown to be too simplistic to fool a detection
system absolutely. Further, such limited testing only hints at the potential of such
techniques. As the “arms race” continues, we expect attacks against camera iden-
tification to increase in sophistication, allowing for more comprehensive parameter
coverage and better noise modeling.

3.3.6 Distinguishing Computer Graphics from Digital Photography. As noted
in Section 1, there is an important legal burden to distinguish imagery consisting
of computer graphics (CG) from digital photography. Thus, in some cases where
the authenticity of an image is in question, before we apply the source camera
identification techniques detailed above, we can check if an image was produced
by a camera in the first place. The techniques for CG detection fall into three
categories [Ng and Chang 2009]: statistical wavelet features, physical models of
images and camera related characteristics. In this section, we will review the most
relevant work for each category.

Lyu and Farid [2005] introduced a statistical model based on first- and higher-
order wavelet statistics that is able to reveal the difference between CG imagery
and digital photographs that are indistinguishable to the human eye. For feature
extraction, images are decomposed in frequency space into multiple scales and
orientations, including vertical V ertci (x, y), horizontal Horizc

i (x, y), and diagonal
Diagc

i (x, y) subbands, where c ∈ {r, g, b} for color imagery. For the statistical
model, two sets of statistics are calculated. First, the first four order statistics
(mean, variance, skewness, and kurtosis) of the subband coefficient histograms of
the decompositions are computed. Second, higher-order statistics are calculated
based on the errors in a linear predictor of coefficient magnitude. Using an SVM
classifier with both orders of statistical features, Lyu and Farid [2005] show that this
model can correctly classify 67% of photorealistic images, while only mis-classifying
1% of the photographic images for a dataset of 40,000 photographic images and
6,000 CG images. In similar work, Wang and Moulin [2006] use wavelet statistics,
but improve the computational efficiency of [Lyu and Farid 2005] by a 4x speed
enhancement.

Ng et al. [2005] propose a geometry based image model that is motivated by the
physical differences between CG imagery and photographic imagery. The authors
develop two levels of image discrimination: image-process authenticity and scene
authenticity. Image-process authenticity is defined as images acquired by a sensor
based image acquisition device, such as a camera or scanner. Scene authenticity
is defined as the result of a snapshot of a physical light field. A series of features
that capture information to support both definitions are computed. These features
include:
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(1) Local Fractal Dimension; to capture the texture complexity in photographs
(2) Local Patch Vectors; to capture the characteristics of the local edge profile
(3) Surface Gradient ; to capture the shape of a camera response function
(4) Principle Components of Local Quadratic Geometry ; to capture the artifacts

due to the CG polygonal model
(5) Beltrami Flow Vector ; to capture the artifacts due to the color independence

assumption in CG

The above five features are considered together, producing a vector field on the im-
age domain. The actual features used as input to an SVM classification system are
rigid body moment statistics computed from the vector field. On a data set consist-
ing of 3200 images including the categories of CG images, personal photographs,
photographs collected from Google Image Search, and CG images re-imaged by a
camera system, Ng et al. [2005] report a classification accuracy of 83.5%.

Camera specific characteristics, such as what we’ve looked at for source identi-
fication can also be used to distinguish CG images from photographs. Revisiting
the work of [Lukas et al. 2006], Dehnie et al. [2006] use noise characteristics to
establish the difference between different camera classes and CG images. The idea
is that even though different cameras possess unique noise characteristics, statis-
tical properties exist that correlate these characteristics across cameras to some
degree. CG images do not posses these common noise characteristics. Dehnie et al.
[2006] present compelling results of statistical difference for CG images generated
by Maya and 3D Studio Max software, and digital photographs. The Bayer pattern
also lends clues to distinguishing the origin of an image. Dirik et al. [2007] takes
the idea of demosaicing features from [Bayram et al. 2005] & [Swaminathan et al.
2006], but modifies their usage by detecting the presence of CFA interpolation as
opposed to estimating CFA interpolation coefficients. The presence of chromatic
aberration in an image is also used as a feature. In a variety of test cases using an
SVM classifier, Dirik et al. [2007] show accuracy of over 90%. Gallagher and Chen
[2008] also propose a demosaicing detection approach, this time by considering the
weighted linear combination of neighboring pixel values. The authors suggest that
the weights directly affect the variance of the distributions from which interpolated
pixels values are drawn. Very high accuracy is achieved (98.4% average accuracy)
on Columbia’s ADVENT6 data set using an unnamed machine learning classifier.
[Gallagher and Chen 2008] contains experiments only on JPEG imagery, and ad-
justs the compression parameters in many experiments; it is unclear what effect the
underlying quantization is having on the correlation algorithm.

Rocha and Goldenstein [2007; Rocha and Goldenstein [2010] have showed that
the Progressive Randomization meta-descriptor, previously introduced for Steganal-
ysis [Rocha and Goldenstein 2006], is also suitable for distinguishing computer gen-
erated from natural images. The method captures the differences between image
classes (e.g., natural and CG images) by analyzing the statistical artifacts inserted
during controlled perturbation processes with increasing randomness.

Methods for distinguishing computer graphics from digital photography are also
prone to counter-forensics techniques. A simple countermeasure that can be used

6http://www.ee.columbia.edu/ln/dvmm/downloads/PIM PRCG dataset/
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by an attacker is the re-imaging technique introduced in [Ng et al. 2005], whereby
the detector is confused by being presented with a photograph of a CG scene. Ng
et al. [2005] addresses this problem by using this type of data in their SVM training
set. Yu et al. [2008] presents another technique to detect re-imaging, harnessing
the observation that the specularity of a recaptured photograph is modulated by
the mesostructure of the photograph’s surface. Thus, its spatial distribution can
be used for classification. On a small data set of 400 images (200 original and
200 re-imaged), the authors validate their statistical classifiers. As with source
camera identification, counter-forensics techniques here are in their infancy, and we
expect to see attacks that are more sophisticated than re-imaging emerge in the
near future.

3.4 Image and video tampering detection

In general, image and video tampering detection approaches [Farid 2009] rely on
analyzing several properties such as: detection of cloned regions, analysis of feature
variations collected from sets of original and tampered scenes, inconsistencies in
the features, inconsistencies regarding the acquisition process, or even structural
inconsistencies present in targeted attacks. In the following, we describe each one
of such approaches and their limitations.

3.4.1 Image cloning detection. Cloning is one of the simplest forgeries an image
can undergo. It is known as copy/move and also is present in more sophisticated
operations such as healing. Often, the objective of the cloning operation is to
make an object “disappear” from one scene using properties of the same scene
(for example, neighboring pixels with similar properties). Cloning detection is a
problem technically easy to solve using exhaustive search. However, such brute-
force solutions are computationally expensive.

Fridrich et al. [2003] propose a faster and more robust approach for detecting
duplicated regions in images. The authors use a sliding window over the image and
calculate the discrete cosine transform (DCT) for each region7. Each calculated
DCT window is stored row-wise in a matrix AD. The authors propose to calculate
a quantized DCT in order to be more robust and perform matchings for non-exact
cloned regions. The next step consists of lexicographically sorting matrix AD and
searching for similar rows. To reduce the resulting false positives, the authors
proposed a post-processing step in which they only consider two rows as a clone
candidate if more rows share the same condition and are close in the image space to
these two rows. Popescu and Farid [2004a] propose a similar approach switching the
DCT calculation to a Karhunen-Loeve Transform and reported comparable results.

As we discussed in Section 1, forgeries are present in the scientific community.
Some authors may use image tampering to improve their results and make them
look more attractive. Farid [2006b] have framed the detection of some scientific
image manipulations as a two-stage segmentation problem. The proposed solution
is suited for grayscale images such as gel DNA response maps. In the first iteration,
the image is grouped, using intensity-based segmentation into regions correspond-

7In the Appendix A, we present a brief description of the discrete cosine transform and JPEG
compression.
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ing to the bands (gray pixels) and the background. In the second iteration, the
background region is further grouped into two regions (black and white pixels)
using the texture-based segmentation. Both segmentations are performed using
normalized cuts [Shi and Malik 2000]. The authors suggest that the healing and
cloning operations will result in large segmented cohesive regions in the background
that are detectable using a sliding window and ad-hoc thresholds. This approach
seems to work well for naive healing and cloning operations, but only a few images
were tested. It would be interesting to verify if a copied band of another image still
would lead to the same artifacts when spliced in the host image.

3.4.2 Video splicing and cloning detection. Wang and Farid [2007b] argue that
the two previous approaches are too computationally inefficient to be used in videos
or even for small sequences of frames and propose an alternative solution to detect
duplicated regions across frames. Given a pair of frames I(x, y,τ 1) and I(x, y,τ 2),
from a stationary camera, the objective is to estimate a spatial offset (∆x, ∆y)
corresponding to a duplicated region of one frame placed in another frame in a
different spatial location. Towards this objective, the authors use phase correlation
estimation [Castro and Morandi 1987]. First, the normalized cross power spectrum
is defined:

Ψ(ωx, ωy) =
F (ωx, ωy, τ1)F ∗(ωx, ωy, τ2)
||F (ωx, ωy, τ1)F ∗(ωx, ωy, τ2||

, (19)

where F (·) is the Fourier transform of a frame, ∗ is the complex conjugate, and
|| · || is the complex magnitude. Phase correlation techniques estimate spatial off-
sets by extracting peaks in ψ(x, y), the inverse Fourier transform of Ψ(ωx, ωy). A
peak is expected at origin (0,0) as it is a stationary camera. Peaks at other posi-
tions denote secondary alignments that may represent a duplication but also simple
camera translations (for non-stationary cameras). The spatial location of a peak
corresponds to candidate spatial offsets (∆x,∆y). For each spatial offset, the au-
thors calculate the correlation between I(x, y,τ 1) and I(x, y,τ 2) to determine if an
offset corresponds to a determined duplication. Toward this objective, each frame
is tiled into 16× 16 overlapping (1 pixel) blocks and the correlation coefficient be-
tween each pair of corresponding blocks is computed. Blocks whose correlation is
above a threshold are flagged as duplications. The authors also propose an exten-
sion for non-stationary cameras. For that, they calculate a rough measure of the
camera motion and compensate by selecting subsequent non-overlapping frames.
One drawback of this approach is that it assumes that the duplicated regions are
rough operations (they do not undergo significant adjustments in the host frame).

Wang and Farid [2007a] present an approach for detecting traces of tampering
in interlaced and de-interlaced videos. For de-interlaced videos, the authors use
an expectation maximization algorithm to estimate the parameters of the under-
lying de-interlacing algorithm. With this model, the authors can point out the
spatial/temporal correlations. Tampering in the video is likely to leave telltale ar-
tifacts that disturb the spatial/temporal correlations. For interlaced videos, the
authors measure the inter-field and inter-frame motion that are often the same for
an authentic video, but may be different for a doctored video. Although effective to
some extent, it is worth discussing some possible limitations. The solution suitable
for interlaced videos is sensitive to compression artifacts hardening the correlations
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estimation. In addition, a counter-attack to the de-interlacing approach consists of
performing the video tampering and then generating an interlaced video (splitting
the even and odd scan lines), and applying a de-interlacing algorithm on top of
that to generate a new de-interlaced video whose correlations will be intact.

3.4.3 Variations in image features. Bayaram et al. [2006] have framed the im-
age forgery detection problem as a feature and classification fusion problem. The
authors claim that doctoring typically involves multiple steps, which often demand
a sequence of elementary image processing operations such as scaling, rotation,
contrast shift, and smoothing, among others. The authors develop single weak “ex-
perts” to detect each such elementary operations. Thereafter, these weak classifiers
are fused. The authors have used features borrowed from the Steganalysis literature
(c.f., Sec. 3.5) such as image quality metrics [Avcibas et al. 2003], binary similarity
measures [Avcibas et al. 2005], and high order separable quadrature mirror filters
statistics [Lyu and Farid 2004]. The main limitation with such approach is that
the elementary operations by themselves do not constitute doctoring operations.
Hence, this approach needs to be used wisely to point out localized operations.
In this case, abrupt brightness and contrast changes in regions in the host image
may point to forgeries (for example, when splicing different images). However, lo-
cal intrinsic changes need to be accounted for in order to reduce the high rate of
false positives. Finally, for criminal forgeries, it is likely that the forger will seek to
match the target and host images in such a way to reduce these subtleties.

Ng and Chang [2004] have proposed a feature-based binary classification sys-
tem using high order statistics to detect image composition. For that, the au-
thors use bicoherence features motivated by the effectiveness of the bicoherence
features for human-speech splicing detection [Nemer et al. 2001]. Bicoherence is
the third order correlation of three harmonically related Fourier frequencies of a
signal Ξ(ω) (normalized bispectrum). The authors report an accuracy of ≈ 71%
on the Columbia Splicing data set [Columbia DVMM Research Lab. 2004]. The
Columbia data set, however, is composed of small composite images without any
kind of post-processing. Figure 10 depicts four images from the data set. Finally,
it is worth noting that the bicoherence features calculation is a computationally
intensive procedure, often O(n4) where n is the number of pixels of an image.

Fig. 10. Some examples from the Columbia Splicing data set. We emphasize the splicing bound-
aries in yellow.

Shi et al. [2007] propose a natural image model to separate spliced images from
natural images. The model is represented by features extracted from a given set of
test images and 2-D arrays produced by applying multi-size block discrete cosine
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transform (MBCT) to the given image. For each 2-D array, the authors calculate
a prediction-error 2-D array, its wavelet sub-bands, and 1-D and 2-D statistical
moments. In addition, the authors also calculate Markov transition probability
matrices for the 2-D array differences that are taken as additional features. Al-
though effective for simple image splicing procedures (copying and pasting) such as
the ones in the Columbia Splicing data set with ≈ 92% accuracy, the approach does
not seem to be effective for more sophisticated compositions that deploy adaptive
edges and structural propagation [Sun et al. 2005]. This is because the transition
matrices are often unable to capture the subtle edge variation upon structural prop-
agation. In addition, such an approach is a binary-based solution; it does not point
out possible forgery candidate regions.

3.4.4 Inconsistencies in image features. When splicing two images to create
a composite, one often needs to re-sample an image onto a new sampling lattice
using an interpolation technique (such as bi-cubic). Although imperceptible, the re-
sampling contains specific correlations that, when detected, may represent evidence
of tampering. Popescu and Farid [2005a] describe the form of these correlations,
and proposes an algorithm for detecting them in an image. The authors showed that
the specific form of the correlations can be determined by finding the neighborhood
size, Φ, and the set of coefficients, �β, that satisfy: �Mi =

�Φ
j=−Φ βj

�Mi+j in the
equation



 �Mi −
Φ�

j=−Φ

βj
�Mi+j



 · �µ = 0, (20)

where �µ is the signal, and �Mi is the ith row of the re-sampled matrix. The au-
thors pointed out that, in practice, neither the samples that are correlated, nor
the specific form of the correlations are known. Therefore, the authors employ
an expectation maximization algorithm (EM) similar to the one in Section 3.3.1
to simultaneously estimate a set of periodic samples correlated to their neighbors
and, an approximation form for these correlations. The authors assume that each
sample belongs to one of two models. The first model M1, corresponds to those
samples si that are correlated to their neighbors and are generated according to
the following model:

M1 : si =
Φ�

k=−Φ

βksi+k +N (i), (21)

where N (i) denote independently, and identically distributed samples drawn from a
Gaussian distribution with zero mean and unknown variance σ2. In the E-step, the
probability that each sample si belonging to model M1 can be estimated through
Bayes rule similarly to the Equation 9, Section 3.3.2, where si replaces f(x, y). The
probability of observing a sample si knowing it was generated by M1 is calculated
in the same way as in Equation 10, Section 3.3.2, where si again replaces f(x, y).
The authors claim that the generalization of their algorithm to color images is fairly
straightforward. They propose to analyze each color channel independently. How-
ever, the authors do not show experiments for the performance of their algorithm
under such circumstances and to what extent such an independence assumption
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is valid. Given that demosaiced color images present high pixel correlation, such
analysis would be valuable.

It is assumed that the probability of observing samples generated by the outlier
model, Pr{si|si ∈ M2}, is uniformly distributed over the range of possible val-
ues of si. Although, it might seem a strong assumption, the authors do not go
into more detail justifying the choice of the uniform distribution for this particu-
lar problem. In the M-step, the specific form of the correlations between samples
is estimated minimizing a quadratic error function. It is important to note that
the re-sampling itself does not constitute tampering. One could just save space by
down-sampling every picture in a collection of pictures. However, when different
correlations are present in one image, there is a strong indication of image compo-
sition. The authors have reported very good results for high-quality images. As the
image is compressed, specially under JPEG 2000, the re-sampling correlates and
hence tampering becomes harder to detect. It is worth noting that it is also possible
to perform a counter attack anticipating the tampering detection and, therefore,
destroying traces of re-sampling. Gloe et al. Gloe et al. [2007] present a targeted
attack in which the pixel correlations are destroyed by small controlled geometric
distortions. The authors superimpose a random disturbance vector to each individ-
ual pixel’s position. To deal with possible jitter effects, the strength of distortion
is adaptively modulated by the local image content using simple edge detectors.

3.4.5 Lighting inconsistencies. When creating a digital composite (for example,
two people standing together), it is often difficult to match the lighting conditions
from the individual photographs. Johnson and Farid [2005] present a solution that
analyzes lighting inconsistencies to reveal traces of digital tampering. Standard
approaches for estimating light source direction begin by making some simplifying
assumptions such as: (1) the surface is Lambertian (it reflects light isotropically);
(2) it has a constant reflectance value; (3) it is illuminated by a point light source
infinitely far away; among others. However, to estimate the lighting direction,
standard solutions require knowledge of the 3-D surface normals from, at least,
four distinct points on a surface with same reflectance, which is hard to find from
a single image and no objects of known geometry in the scene. The authors have
used a clever solution first proposed by [Nillius and Eklundh 2001] that estimates
two components of the light source direction from a single image. The authors also
relax the constant reflectance assumption by assuming that the reflectance for a
local surface patch is constant. This requires the technique to estimate individual
light source directions for each patch along a surface. Figure 11(a) depicts an
example where lighting inconsistencies can point out traces of tampering.

More recently, Johnson and Farid [2007a] extended this solution to complex light-
ing environments by using spherical harmonics. Under the aforementioned simpli-
fying assumptions, an arbitrary lighting environment can be expressed as a non-
negative function on the sphere, L( �A). �A is a unit vector in Cartesian coordinates
and the value of L( �A) is the intensity of the incident light along direction �A. If the
object being illuminated is convex, the irradiance (light received) at any point on
the surface is due only to lighting environment (no cast shadows or inter-reflections).

It is worth noting, however, that the assumptions of the authors limit the ap-
plicability of the algorithm. Real-world effects, such as interreflections, shadows,
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and changes in albedo can affect the estimates. In addition, sometimes there are
cases where different lighting environments give rise to similar model coefficients,
and therefore, the lighting differences are indistinguishable.

As a result, the irradiance, ι(�U), can be parametrized by the unit length surface
normal �U and written as a convolution of the reflectance function on the surface,
Λ( �A, �U), with the lighting environment L( �A):

ι(�U) =
�

Ω
L( �A)Λ( �A, �U)dΩ (22)

where Ω represents the surface. For a Lambertian surface, the reflectance function
is a clamped cosine:

Λ( �A, �U) = max( �A · �U, 0). (23)
The convolution in Equation 22 can be simplified by expressing both the lighting

environment and the reflectance functions in terms of spherical harmonics. The
authors have validated their approach on a series of light probe images and showed
good capability to estimate the lighting environment and its inconsistencies. A light
probe image is an omnidirectional, high dynamic range image that records the inci-
dent illumination conditions at a particular point in space (see Figure 11(b)). Light-
ing environments can be captured by a variety of methods such as photographing
a mirror sphere or through panoramic photographic techniques [Debevec 1998].

When analyzing the occluding contours of objects in real images, it is often the
case that the range of surface normals is limited. Therefore, small amounts of noise
in either the surface normals or the measured intensities can cause large variations
in the estimation of the lighting environment [Johnson and Farid 2007a]. Finally,
another drawback of this solution is that to inspect an image for forgery detection,
the occluding contours of objects in the scene must be pointed out manually.

More recently, the work of Johnson and Farid [2007b] has also investigated light-
ing inconsistencies across specular highlights on the eyes to identify composites of
people. The position of a specular highlight is determined by the relative positions
of the light source, the reflective surface and the viewer (or camera). According to
the authors, specular highlights that appear on the eye are a powerful cue as to the
shape, color, and location of the light source(s). Inconsistencies in these properties
of the light can be used as telltales of tampering. It is worth noting that specular
highlights tend to be relatively small on the eye giving room to a more skilled forger
to manipulate them to conceal traces of tampering. To do so, shape, color, and lo-
cation of the highlight would have to be constructed so as to be globally consistent
with the lighting in other parts of the image.

3.4.6 Acquisition inconsistencies. In the same way that we can use camera prop-
erties to point out the camera that captured an image, we also can use them as a
digital X-ray for revealing forgeries [Chen et al. 2007].

Lin et al. [2005] present an approach that explores camera response normality and
consistency functions to find tampering footprints. An image is tagged as doctored
if the response functions are abnormal or inconsistent to each other. The camera
response function is a mapping relationship between the pixel irradiance and the
pixel value. For instance, suppose a pixel is on an edge and the scene radiance
changes across the edge and is constant on both sides of the edge (Figure 12(a)).
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Host image

Spliced image

Source Θ2

Source Θ1

(a) Composite example with lighting in-
consistencies.

Galileo's Tomb, 

Santa Croce, Florence

Grace Cathedral, 
San Francisco

The Uffizi Gallery, 

Florence

St. Peter's Basilica, 

Rome

(b) Four light probes from different lighting envi-
ronments. Credits to Paul Debevec and Dan Lem-
mon.

Fig. 11. Lighting and forgeries.

Therefore, the irradiance of the pixel on the edge should be a linear combination
of those of the pixels clear off the edges (Figure 12(b)). Due to nonlinear response
of the camera, the linear relationship breaks up among the read-out values of these
pixels (Figure 12(c)). The authors estimate the original linear relationship when
calculating the inverse camera response function [Lin et al. 2004]. Although effective
in some situations, this approach has several drawbacks. Namely, (1) to estimate the
camera response function, the authors must calculate an inverse camera response
function which requires learning a Gaussian Mixture Model from a database with
several known camera response functions (DoRF) [Lin et al. 2005]. If the analyzed
image is a composite of regions from unknown cameras, the model is unable to
point out an estimation for the camera response function; (2) the approach requires
the user to manually select points on edges believed to be candidates for splicing;
(3) the solution requires high contrast images to perform accurate edge and camera
normality estimations; (4) the approach might fail if the spliced images are captured
by the same camera and not synthesized along the edges of an object; (5) Finally, it
is likely the solution does not work with CMOS adaptive sensors that dynamically
calculate the camera response function to produce more pleasing pictures.

Chen et al. [2007] propose to use inconsistencies in the photo-response non-
uniformity noise (c.f., Sec. 3.3.2) to detect traces of tampering. The method assumes
that either the camera that took the image or at least some other pristine images
taken by the camera are available. The algorithm starts by sliding a 128×128 block
across the image and calculating the value of the test statistics, pB, for each block
B. The probability distribution function pdf(x|H0) of pB under H0 is estimated
by correlating the PRNU noise residuals from other cameras and is modeled as a
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Fig. 12. Camera Response Function Estimation. (a) R1 and R2 are two regions with constant
radiance. The third column images are a combination of R1 and R2. (b) The irradiances of
pixels in R1 map to the same point ι1, in RGB color space. The same happens for pixels in R2

which maps to ι2. However, the colors of the pixels in the third column results from the linear
combination of ι1 and ι2. (c) The camera response function fcam warps the line segment in (b)
into a curve during read-out.

generalized Gaussian. For each block, pdf(x|H1) is obtained from a block correla-
tion predictor and is also modeled as a generalized Gaussian. For each block B,
the authors perform Neyman-Pearson hypothesis testing by fixing the false alarm
rate Fa and decide that B has been tampered if pB < Th. The threshold Th is
determined from the condition Fa =

�
Th pdf(x|H0)dx.

3.4.7 JPEG inconsistencies. Some forgery detection approaches are devised
specifically for a target. Popescu and Farid [2004b] discuss the effects of double
quantization for JPEG images and presents a solution to detect such effects. Dou-
ble JPEG compression introduces specific artifacts not present in single compressed
images. The authors also note that evidence of double JPEG compression, however,
does not necessarily prove malicious tampering. For example, it is possible for a
user to simply re-save a high quality JPEG image with a lower quality8. Figure
3.4.7 depicts an example of the double quantization effect over a 1-d toy example
signal µ[t] normally distributed in the range [0, 127].

Inspired by the pioneering work of [Popescu and Farid 2004b] regarding double
quantization effects and their use in forensics, He et al. [2006] propose an approach
to locate doctored parts in JPEG images by examining the double quantization
effect hidden among DCT coefficients. The idea is that as long as a JPEG image
contains both the doctored part and the pristine part, the discrete cosine coefficient
histograms of the pristine part will still have the double quantization effect (DQ),
because this part of the image is the same as that of the double compressed original
JPEG image. However, the histograms of a doctored part will not have the same
DQ effects, if the doctored part is taken from a different image format, or different
JPEG image. Some possible reasons for these observations are: (1) absence of

8A brief summary of JPEG compression is presented in Appendix A.
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Fig. 13. The top row depicts histograms of single quantized signals with steps 2 (left) and 3
(right). The bottom row depicts histograms of double quantized signals with steps 3 followed
by 2 (left), and 2 followed by 3 (right). Note the periodic artifacts in the histograms of double
quantized signals. Credits to Alin Popescu.

the first JPEG compression in the doctored part; (2) mismatch of the DCT grid
of the doctored part with that of the pristine part; or (3) composition of DCT
blocks along the boundary may carry traces of the doctored and pristine parts
given that it is not likely that the doctored part exactly consists of 8× 8 blocks. It
is worth noting, however, that this solution will not work in some circumstances.
For instance, if the original image to contribute to the pristine part is not a JPEG
image, the double quantization effect of the pristine part cannot be detected. In
addition, the compression levels also affect the detection. Roughly speaking, the
smaller the ratio of the second quantization step with respect to the first one, the
harder the detection of the DQ effects. Finally, if the forger re-samples the grid
of the DCT (shift the image one pixel), it is possible to destroy the traces of the
double quantization and generate a complete new quantization table.

3.5 Image and video hidden content detection/recovery

Steganography is the art of secret communication. Its purpose is to hide the pres-
ence of communication — a very different goal than Cryptography, which aims to
make communication unintelligible for those that do not possess the correct access
rights [Anderson and Petitcolas 1998].

Applications of Steganography can include feature location (identification of sub-
components within a data set), captioning, time-stamping, and tamper-proofing
(demonstration that original contents have not been altered). Steganography and
Steganalysis have received a lot of attention around the world in the past few
years [Rocha and Goldenstein 2008]. Unfortunately, not all applications are harm-
less; strong indications exist that Steganography has been used to spread child
pornography on the Internet [Hart 2004; Morris 2004], and as an advanced commu-
nication tool for terrorists and drug-dealers [Herald Sun 2008; Folha de São Paulo
2008]. In the aftermath of the 9/11 events, some researchers have suggested that
the Al Qaeda network used Steganography techniques to coordinate the World
Trade Center attacks. Almost six years later, nothing was proved [Wallich 2003;
Cass 2003; Kumagai 2003; Rocha and Goldenstein 2008]. Indeed, according to the
High Technology Crimes Annual Report [USPS 2003; NHTCU 2008], Steganogra-
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phy threats can also appear in conjunction with dozens of other cyber-crimes such
as: fraud and theft, computer cracking, online defamation, intellectual property
offenses, and online harassment.

In response to such problems, the forensic analysis of such systems is paramount.
We refer to Forensic Steganalysis as the area related to the detection and recovery
of hidden messages. In this forensic scenario, we want to distinguish non-stego or
cover objects, those that do not contain a hidden message, and stego-objects, those
that contain a hidden message with the additional requirement of recovering its
content as a possible proof basis for the court.

In the following sections, we present representative research with respect to the
identification and recovery of hidden messages in digital multimedia. When possi-
ble, we emphasize approaches that can be used as an aid for criminal prosecution
in a court of law. The fundamental goal of Steganalysis is to reliably detect the ex-
istence of hidden messages in communications and, indeed, most of the approaches
in the literature have addressed only the detection problem. However, for forensics
purposes, we are interested in the higher level of analysis going one step further
and attempting to recover the hidden content.

We can model the detection of hidden messages in a cover medium as a clas-
sification problem. In Steganalysis, we have two extreme scenarios: (1) Eve, an
eavesdropper, has only some level of suspicion that Alice and Bob are covertly
communicating; and (2) Eve may have some additional information about Alice
and Bob’s covert communications such as the algorithm they have used, for in-
stance. In the first case, we have a difficult forensic scenario where Eve would need
to deploy a system able to detect all forms of Steganography (Blind Steganalysis).
In the latter case, Eve might have additional information reducing her universe of
possible hiding algorithms and cover media (Targeted Steganalysis).

In general, steganographic algorithms rely on the modification of some component
of a digital object with a pseudo-random secret message [Anderson and Petitcolas
1998]. In digital images, common components used to conceal data are: (1) the
least significant bits (LSBs); (2) DCT coefficients in JPEG-compressed images; and
(3) areas with richness in details [Cox et al. 2008].

Figure 14 depicts a typical Steganography and Steganalysis scenario. When
embedding a message in an image, one can take several steps in order to avoid
message detection such as choosing an embedding key, compressing the message,
and applying statistical profiling in the message and the cover media. On the other
hand, in the Steganalysis scenario, we can try to point out the concealment whether
performing statistical analysis on the input image, or on the image and on a set of
positive and negative training examples. If we have additional information, this can
be used to perform a targeted attack. In the following sections, we present some
approaches used to detect such activities using either targeted or blind attacks.

3.5.1 Targeted Steganalysis. Some successful approaches for targeted Steganal-
ysis proposed in the literature can estimate the embedding ratio or even reveal
the secret message with the knowledge of the steganographic algorithm being very
useful for forensics.

Basic LSB embedding can be reliably detected using the histogram attack as pro-
posed by [Westfeld and Pfitzmann 1999]. Any possible LSB embedding procedure
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Fig. 14. Typical Steganography and Steganalysis scenario.

will change the contents of a selected number of pixels and therefore will change
the pixel value statistics in a local neighborhood.

A K-bit color channel can represent 2K possible values. If we split these values
into 2K−1 pairs that only differ in the LSBs, we are considering all possible patterns
of neighboring bits for the LSBs. Each of these pairs are called pair of value (PoV)
in the sequence [Westfeld and Pfitzmann 1999].

When we use all the available LSB fields to hide a message in an image, the dis-
tribution of odd and even values of a PoV will be the same as the 0/1 distribution of
the message bits. The idea of the statistical analysis is to compare the theoretically
expected frequency distribution of the PoVs with the real observed ones [Westfeld
and Pfitzmann 1999]. However, we do not have the original image and thus the
expected frequency. In the original image, the theoretically expected frequency is
the arithmetical mean of the two frequencies in a PoV. As we know, the embedding
function only affects the LSBs, so it does not affect the PoV’s distribution after an
embedding. Therefore the arithmetical mean remains the same in each PoV, and
we can derive the expected frequency through the arithmetic mean between the
two frequencies in each PoV.

As presented in [Provos and Honeyman 2001; Westfeld and Pfitzmann 1999], we
can apply the χ2 (chi squared-test) T over these PoVs to detect hidden messages

T =
k�

i=1

(freqobs
i − freqexp

i )2

freqexp
i

, (24)

where k is the number of analyzed PoVs, freqobs
i and freqexp

i are the observed
frequencies and the expected frequencies respectively. A small value of T points
out that the data follows the expected distribution and we can conclude that the
image was tweaked. We can measure the statistical significance of T by calculating
the PR-value, which is the probability that a chi-square distributed random variable
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with k − 1 degrees of freedom would attain a value larger than or equal to T :

Pr(T ) =
1

2
k−1
2 Γ(k−1

2 )

� ∞

T
e
−x
2 x

k−1
2 −1dx. (25)

If the image does not have a hidden message, T is large and Pr(T ) is small. In
practice, we calculate a threshold value Tth so that Pr(Tth) = η where η is the chosen
significance level. The main limitation with this approach is that it only detects
sequential embeddings. For random embeddings, we could apply this approach
window-wise. However, in this case it is effective only for large embeddings such as
the ones that modify, at least, 50% of the available LSBs. For small embeddings,
there is a simple counter-attack that breaks down this detection technique. For
that, it is possible to learn the basic statistics about the image and to keep such
statistics when embedding the message. For instance, for each bit modified to one,
another one is flipped to zero. Indeed, as we shall show later, Outguess9 is one
approach that uses such tricks when performing embeddings in digital images.

Fridrich et al. [2001] present RS analysis. It consists of the analysis of the LSB
lossless embedding capacity in color and gray-scale images. The lossless capacity
reflects the fact that the LSB plane — even though it looks random — is related to
the other bit planes [Fridrich et al. 2001]. Modifications in the LSB plane can lead
to statistically detectable artifacts in the other bit planes of the image. The authors
have reported good results (detection for message-sizes as small as ≈ 2− 5% on a
limited set of images for the Steganography tools: Steganos, S-Tools, Hide4PGP,
among others10.

A similar approach was devised by [Dumitrescu et al. 2002] and is known as
sample pair analysis. Such an approach relies on the formation of some subsets of
pixels whose cardinalities change with LSB embedding, and such changes can be
precisely quantified under the assumption that the embedded bits form a random
walk on the image. Consider the partitioning of an input image in vectorized form
U into pairs of pixels (pu, pv). Let P be the set of all pairs. Let us partition P into
three disjoint sets X,Y , and Z, where

X = {(pu, pv) ∈ P | (pv is even and pu < pv) or (pv is odd and pu > pv) }
Y = {(pu, pv) ∈ P | (pv is even and pu > pv) or (pv is odd and pu < pv) }
Z = {(pu, pv) ∈ P | (pu = pv)} (26)

Furthermore, let us partition the subset Y into two subsets, W , and V , where
V = Y \W , and

Y = {(pu, pv) ∈ P | (pu = 2k, pv = 2k + 1) or (pu = 2k + 1, pv = 2k)} (27)

The sets X,W, V, and Z are called primary sets and P = X ∪W ∪ V ∪ Z. When
one embeds content in an image, the LSB values are altered and therefore the
cardinalities of the sets will change accordingly. As we show in Figure 15, we have
four possible cases π ∈ {00, 01, 10, 11}. Let p be the relative amount of modified
pixels in one image due to embedding. Hence, the probability of a state change is

9http://www.outguess.org/
10http://members.tripod.com/steganography/stego/software.html
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given by

ρ(00,P) = (1− p/2)2

ρ(01,P) = ρ(10,P) = p/2(1− p/2)2

ρ(11,P) = (p/2)2. (28)

and the cardinalities after the changes are

|X �| = |X|(1− p/2) + |V |p/2
|V �| = |V |(1− p/2) + |X|p/2
|W �| = |W |(1− p + p2/2) + |Z|p(1− p/2) (29)

It follows that

|X �|− |V �| = (|X|− |V |)(1− p). (30)

The authors have empirically noted that, on average, for natural images (no hidden
content) |X| = |Y |. Therefore,

|X �|− |V �| = |W |(1− p). (31)

Observe in Figure 15 that the embedding process does not alter W ∪Z. Hence, we
define γ = |W |+ |Z| = |W �|+ |Z �| yielding

|W �| = (|X �|− |V �|)(1− p)2 + γp(1− p/2). (32)

Given that |X �|+ |V �|+ |W �|+ |Z �| = |P|, we have the estimation of the embedded
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Fig. 15. Transitions between primary sets under LSB changing.

content size

0.5γp2 + (2|X �|− |P|)p + |Y �|− |X �| = 0. (33)

This approach has been tested in [Cox et al. 2008] over three data sets summing up
to 5,000 images. The data sets comprise raw, compressed, and also scanned images.
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The approach is able to detect messages as small as 5% of the available space for
normal LSB embedding with no statistical profiling.

Ker [2007b] has studied the statistical properties of the analysis of pairs and
also proposes an extension using weighted least squares. Recently, Bohme [2008]
presented an extension for JPEG covers. Several other approaches have been de-
signed to detect targeted Steganalysis specifically in the JPEG domain [Fridrich
2004; Pevny and Fridrich 2005; Fu et al. 2006].

Shi et al. [2003] have analyzed the gradient energy flipping rate during the em-
bedding process. The hypothesis is that the gradient energy varies consistently
when the image is altered to conceal data.

For most of the above techniques, the authors do not discuss possible counter-
attacks to their solutions. For instance, the sample pairs solution [Dumitrescu et al.
2002] and the RS analysis [Fridrich et al. 2001] rely on the analysis of groups of
modified and non-modified pixels. What happens if someone knows these detection
solutions and compensates for the group distribution for each modified pixel? Do
the solutions still work after such kind of statistical profiling?

3.5.2 Blind Steganalysis. Most of the blind- and semi-blind detection approaches
rely on supervised learning techniques. The classifiers used in existing blind and
semi-blind Steganalysis refer to virtually all categories of classical classification such
as regression, multi-variate regression, one class, two class, and hyper-geometric
classifications, among others.

Both in blind and semi-blind scenarios, the classifier is a mapping that depends
on one or more parameters that are determined through training and based on the
desired tradeoff between both type of errors (false accept and false reject) that the
classifier can make. Therefore, Steganalysis begins with the appropriate choice of
features to represent both the stego and non-stego objects.

In the semi-blind scenario, we select a set of stego algorithms and train a classifier
in the hope that when analyzing an object concealing a message embedded with an
unknown algorithm, the detector will be able to generalize. On the other hand, in
the complete blind scenario, we only train a set of cover objects based on features
we believe will be altered during the concealment of data. In this case, we train
one-class classifiers and use the trained model to detect outliers.

Some of the most common features used in the literature to feed classifiers are
based on wavelet image decompositions, image quality metrics, controlled pertur-
bations, moment functions, and histogram characteristic functions.

Lyu and Farid [2002a; 2002b] introduce a detection approach based on probability
distribution functions of image sub-bands coefficients. This work has become a basis
for several others. The motivation is that natural images have regularities that
can be detected by high-order statistics through quadrature mirror filter (QMF)
decompositions [Vaidyanathan 1987].

The QMF decomposition divides the image into multiple scales and orienta-
tions. We denote the vertical, horizontal, and diagonal sub-bands in a given scale
{i = 1 . . . n} as V erti(x, y), Horizi(x, y), Diagi(x, y), respectively. Figure 16
depicts one image decomposition with three scales. Lyu and Farid [2002a; 2002b]
propose to detect hidden messages using two sets of statistics collected throughout
the multiple scales and orientations. The first set of statistics comprises mean,
variance, skewness, and kurtosis. These statistics are unlikely to capture the strong
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Fig. 16. Image sub-bands QMF decomposition.

correlations that exist across space, orientation, scale and color. Therefore, the
authors calculate a second set of statistics based on the errors in a linear predictor
of coefficient magnitude. For the sake of illustration, consider a vertical sub-band
of a gray image at scale i, V erti(x, y). A linear predictor for the magnitude of
these coefficients in a subset of all possible spatial, orientation, and scale neighbors
is given by

|V erti(x, y)| = w1|V erti(x− 1, y)|+ w2|V erti(x + 1, y)|+ w3|V erti(x, y − 1)|

+ w4|V erti(x, y + 1)|+ w5

˛̨
˛V erti+1

“x
2

,
y
2

”˛̨
˛ + w6|Diagi(x, y)|

+ w7

˛̨
˛Diagi+1

“x
2

,
y
2

”˛̨
˛ , (34)

where | · | represents absolute value and wj are the weights. We can represent
this linear relationship in matrix form as �V = Q �W, where the column vector
�W = (w1, . . . , w7)T , the vector �V contains the coefficient magnitudes of Vi(x, y)
strung out into a column vector, and the columns of the matrix Q contain the
neighboring coefficient magnitudes as in Equation 34 also strung out into column
vectors. The coefficients are determined through the minimization of the quadratic
error function

�( �W) = [�V −Q �W]2. (35)

This error is minimized through differentiation with respect to �W. Setting the
result equal to zero, and solving for �W, we have

�W = (QTQ)−1QT�V. (36)

Finally, the log error in the linear predictor is given by

�� = log2
�V − log2 (Q �W). (37)

It is from this error that the additional mean, variance, skewness, and kurtosis
statistics are collected. This process is repeated for each sub-band, and scale.
From this set of statistics, the authors train the detector with images with and
without hidden messages.
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Lyu and Farid [2004; 2006] have extended this set of features to color images
and proposes a one-class classifier with hyper-spheres representing cover objects.
Outliers of this model are tagged as stego objects. A similar procedure using
Parzen-Windows was devised by [Rodriguez et al. 2007] to detect anomalies in
stego systems.

Rocha and Goldenstein [2006; Rocha and Goldenstein [2010] have presented the
Progressive Randomization meta-descriptor for Steganalysis. The principle is that
it captures the difference between image classes (e.g., with and without hidden mes-
sages) by analyzing the statistical artifacts inserted during controlled perturbation
processes with increasing randomness.

Avcibas et al. [2003] have presented a detection scheme based on image quality
metrics (IQMs). The motivation is that the embedding can be understood as an
addition of noise to the image therefore degrading its quality. They have used
multivariate regression analysis for detection. Avcibas et al. [2005] have introduced
an approach that explores binary similarity measures within image bit planes. The
basic idea is that the correlation between the bit planes as well as the binary texture
characteristics within the bit planes differ between a stego image and a cover image.

Histogram characteristic functions and statistics of empirical co-occurrence ma-
trices also have been presented with relative success [Shi et al. 2005; Chen et al.
2006; Xuan et al. 2006; Xuan et al. 2005; Fridrich 2004].

Despite of all the advances, one major drawback of the previous approaches is
that most of them are only able to point out whether or not a given image contains
a hidden message. Currently, with classifier-based blind or semi-blind approaches
it is extremely difficult or even impossible to identify portions of the image where a
message is hidden and perform message extraction or even only point out possible
tools used in the embedding process. A second drawback in this body of work is the
lack of counter-analysis techniques to assess the viability of the existing research.
Outguess11 [Provos 2001] and F5 [Westfeld 2001] are two early examples of such
works.

Outguess is a steganographic algorithm that relies on data specific handlers that
extract redundant bits and write them back after modification. For JPEG im-
ages, Outguess preserves statistics based on frequency counts. As a result, sta-
tistical tests based on simple frequency counts are unable to detect the presence
of steganographic content [Provos 2001]. Outguess uses a generic iterator object
to select which bits in the data should be modified. In addition, F5 was proposed
with the goal of providing high steganographic capacity without sacrificing security.
Instead of LSB flipping (traditional embedding approaches), the embedding opera-
tion in F5 preserves the shape of the DCT histogram. The embedding is performed
according to a pseudo-random path determined from a user pass-phrase. Later on,
Fridrich et al. [2002] provided a targeted attack that detects messages embedded
with the F5 algorithm throughout a process called calibration. With this approach,
we estimate the original cover-object from the suspected stego-object. In the case
of JPEG images, for instance, this is possible because the quantized DCT coeffi-
cients are robust to small distortions (the ones performed by some steganographic
algorithms) [Cox et al. 2008]. The approach of [Fridrich et al. 2002] is no longer as

11http://www.outguess.org/
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effective if we improve F5 with some sort of statistical profiling preserving not only
the DCT histogram shape but also compensating for the modified coefficients.

Much more work of this sort is essential, given that this scenario looks like an
arms race in which Steganographers and Steganalyzers compete to produce better
approaches in a technological escalation.

In the Stegi@Work section, we present a common framework that allows us to
combine most of the state of the art solutions in a compact and efficient way toward
the objective of recovering the hidden content.

Some other flaws related to the classifier-based blind or semi-blind approaches
are

• The choice of proper features to train the classifier upon is a key step. There is
no systematic rule for feature selection. It is mostly a heuristic, trial and error
method [Chandramouli and Subbalakshmi 2004].

• Some classifiers have several parameters that have to be chosen (type of kernels,
learning rate, training conditions) making the process a hard task [Chandramouli
and Subbalakshmi 2004].

• To our knowledge, a standard reference set has yet to emerge in the Steganalysis
field to allow fair comparison across different approaches. One step in that di-
rection is the work of [Rocha et al. 2008] which presents two controlled data sets
to test hidden message detection approaches and the work of [Ker 2007a] which
presents a new benchmark for binary steganalysis methods.

3.5.3 Stegi@Work. What is needed for today’s forensics applications is a scal-
able framework that is able to process a large volume of images (the sheer volume
of images on sites such as Flickr and Picasa is testament to this). As we have
repeatedly seen throughout this paper, individual techniques for forensic analysis
have been developed for specific tools, image characteristics, and imaging hardware,
with results presented in the limited capacity of each individual work’s focus. If
a high capacity framework for digital image and video forensics was available, the
forensic tools presented in this paper could be deployed in a common way, allowing
the application of many tools against a candidate image, with the fusion of results
giving a high-confidence answer as to whether an image contains steganographic
content, is a forgery, or has been produced by a particular imaging system. In our
own work in the “Vision of the Unseen,” we have focused on the development of a
cross-platform distributed framework specifically for Steganalysis, embodying the
above ideas, that we call Stegi@Work. In this section, we will summarize the overall
architecture and capabilities of the Stegi@Work framework as an example of what
a distributed forensics framework should encompass.

Stegi@Work, at the highest architectural level (details in Figure 17), consists of
three entities. A requester client issues jobs for the system to process. Each job
consists of a file that does or does not contain steganographic content. This file
is transmitted to the Stegi server, which in turn, dispatches the job’s processing
to the worker clients. Much like other distributed computing frameworks such as
Seti@home

12 and Folding@home
13, worker clients can be ordinary workstations on

12http://setiathome.berkeley.edu/
13http://folding.stanford.edu/
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a network with CPU cycles to spare. The Stegi server collects the results for each
job, and performs fusion over the set of results, to come to a final conclusion about
the status of the file in question. Each network entity may be connected via a LAN,
or logically separated by firewalls in a WAN, facilitating the use of worker clients
or requestor clients on a secure or classified network, while maintaining presence on
an insecure network, such as the Internet. The Stegi server exists as the common
point of contact for both.

The specifics of job communication (details in Figure 18), include the specific
definitions for each job packet transmitted between network entities. Between the
requester client and the Stegi server, both job request and job results packets are
exchanged. In a job request, the file in question is transmitted to the server, along
with optional tool selection and response requests. If these are not specified, the
server can choose them automatically based on the type of the submitted file, as
well as a defined site policy. The server receives a detailed report packet from each
worker client, including the results of all of the tools applied against a file, as well as
additional details about the job, such as execution time. Additional status packets
are transmitted between all network entities, including server status to a worker
client, notifying it that a job (with the file and appropriate tools) is ready, worker
client status to the server, indicating the current state of a job, and server status to
a worker client indicating what should be known about a job that is in the system.

The Stegi@Work architecture provides tool support for each worker client in the
form of a wrapper API around the tool for each native platform. This API defines
process handling, process status, and control signaling, allowing the Stegi server full
control over each process on each worker client. The current system as implemented
supports wrappers written in C/C++, Java, and Matlab, thus supporting a wide
range of tools on multiple platforms. Network communication between each native
tool on the worker client and the Stegi@Work system is defined via a set of XML
messages. We have created wrappers for the popular analysis tools stegdetect14 and
Digital Invisible Ink Toolkit15, as well as a custom tool supporting signature-based
detection, as well as the statistical χ2 test.

In order for high portability, allowing for many worker clients, the Stegi@Work
framework has been implemented in Java, with tool support, as mentioned above,
in a variety of different languages. This is accomplished through the use of Java
Native Interface16 (JNI), with Win32 and Linux calls currently supported. The
Stegi@Work server is built on top of JBOSS17, with an Enterprise Java Beans18
(EJB) 3.0 object model for all network entities. GUI level dialogues are available
for system control at each entity throughout the framework.

The actual use cases for a system like Stegi@Work extend beyond large-scale
forensics for intelligence or law enforcement purposes. Corporate espionage re-
mains a serious threat to business, with loss estimates as high as $200 billion19. An

14http://www.outguess.org/detection.php
15http://diit.sourceforge.net/
16http://swik.net/JNI+Tutorial
17http://www.jboss.org/
18http://www.conceptgo.com/gsejb/index.html
19http://news.bbc.co.uk/2/hi/technology/5313772.stm
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enterprise can deploy requestor clients at the outgoing SMTP servers to scan each
message attachment for steganographic content. If such content is detected, the sys-
tem can quarantine the message, issue alerts, or simply attempt to destroy [Johnson
and Jajodia 1998; Petitcolas et al. 1998] any detected content automatically, and
send the message back on its way. This last option is desirable in cases where false
positives are more likely, and thus, a problem for legitimate network users. Like-
wise, a government agency may choose to deploy the system in the same manner
to prevent the theft of very sensitive data.
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Fig. 17. Stegi@Work overall architecture.

4. CONCLUSIONS

A remarkable demand for image- and video- based forensics has emerged in recent
years in response to a growing need for investigative tools for a diverse set of needs.
From the law enforcement community’s perspective, image based analysis is crucial
for the investigation of many crimes, most notably child pornography. Yet, crime
that utilizes images is not limited to just pornography, with entities as diverse as
Colombian drug cartels taking advantage of steganography to mask their activities.
From the intelligence community’s perspective, the ability to scan large amounts of
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secret and public data for tampering and hidden content is of interest for strategic
national security. As the case of the Iranian missiles has shown, state based actors
are just as willing to abuse image processing as common criminals.

But the obvious crimes are not necessarily the most damaging. The digital world
presents its denizens with a staggering number of images of dubious authenticity.
Disinformation via the media has been prevalent throughout the last century, with
doctored images routinely being used for political propaganda. But now, with
the near universal accessibility of digital publishing, disinformation has spread to
commercial advertising, news media, and the work of malicious pranksters. Is it
at all possible to determine whether an image is authentic or not? If we cannot
determine the authenticity, what are we to believe about the information the image
represents?

Digital Image and Video Forensics research is an important emerging field in
computing that acts as a countermeasure to the intentional misuse of digital image
editing tools. As we have seen in this survey, the main objectives of digital image
and video forensics include tampering detection (cloning, healing, retouching, splic-
ing), hidden messages detection/recovery, and source identification with no prior
measurement or registration of the image (the availability of the original reference
image or video). We have taken a look at many individual algorithms and tech-
niques designed for very specific detection goals. However, the specific nature of
the entire body of digital image and video forensics work is its main limitation at
this point in time. How is an investigator able to choose the correct method for an
image at hand? Moreover, the sheer magnitude of images that proliferate through-
out the Internet poses a serious challenge for large-scale hidden content detection
or authenticity verification.

In response to this challenge, we make several recommendations for researchers
working in this field. First, work on decision level and temporal fusion serves
as an excellent basis for operational systems. Combining information from many
algorithms and techniques yields more accurate results — especially when we do
not know precisely what we are looking for. Second, the need for large distributed
(or clustered) systems for parallel evaluation fills an important role for national
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and corporate security. Our Stegi@Work system is an example of this. Third,
the evaluation of existing and new algorithms must be improved. The analysis of
detection results in nearly all papers surveyed lacks the rigor found in other areas of
digital image processing and computer vision, making the assessment of their utility
difficult. More troubling, in our survey, only a few papers on counter-forensics for
image based forensics were found, leading us to question the robustness of much
of the work presented here to a clever manipulator. Finally, for forgery detection
and steganalysis, more powerful algorithms are needed to detect specifics about
manipulations found in images, not just that an image has been tampered with.
Despite these shortcoming, the advancement of the state of the art will continue to
improve our Vision of the Unseen.
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A. DISCRETE COSINE TRANSFORM AND JPEG COMPRESSION

The discrete cosine transform (DCT) algorithm is one of the main components of
the JPEG compression technique [Gonzalez and Woods 2007]. The JPEG stan-
dard specifies two compression schemes: a lossless predictive scheme and a lossy
scheme based on the discrete cosine transform (DCT). For the lossy part, the most
used technique is based on a subset of the DCT-based modes of operation. In
this appendix, we present a summary of the baseline method. In general, JPEG
compression works as follow

(1) Split the image into 8× 8 blocks.
(2) Transform each block via DCT. This outputs a multi-dimensional array

of 64 coefficients. For this intent, the pixels in the image samples grouped
in the 8 × 8 blocks are shifted from unsigned to signed integers (i.e., from
[0, 255] → [−128, 127]). Thereafter, the DCT of the blocks is computed. Let
f(x, y) denote an 8× 8 image block, then its DCT takes the form

D(ωx, ωy) =
1
4
c(ωx)c(ωy)

7X

x=0

7X

y=0

f(x, y) cos
(2x + 1)ωxπ

16
cos

(2y + 1)ωyπ
16

, (38)

where ωx, ωy = 0, . . . , 7, and c(ω) = 1√
2
, for ω = 0, and c(ω) = 1 otherwise.

(3) Use a lossy quantizer to round each of the resulting coefficients. This is
essentially the compression stage and it is where data is lost. Small unimportant
coefficients are rounded to 0 while larger ones lose some of their precision.
Quantization is a point-wise operation defined as a division by a quantization
step followed by rounding to the nearest integer.

Dquant(ωx, ωy) =
�
D(ωx, ωy)
s(ωx, ωy)

+
1
2

�
, ωx, ωy = 0, . . . , 7, (39)

where s(ωx, ωy) is a frequency-dependent quantization step and it is related to
the JPEG compression quality. For more details on how to find s(ωx, ωy) and
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the quantization tables used in JPEG compression, please refer to [Gonzalez
and Woods 2007].

(4) Use a lossless quantizer. At this stage, the array of streamlined coefficients
is further compressed using lossless entropy compression. The most frequently
used procedure is Huffman coding, while arithmetic coding is also supported.

(5) Decompressing. To decompress, use the entropy decoding, de-quantization,
and the inverse DCT procedures, in this order.
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