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Abstract

Iris biometrics are one of the strongest modalities in
terms of performance, and as such, are used in several high-
security scenarios. However, remote/network authentica-
tion creates its own class of problems that have not previ-
ously been considered. In this work, we adapt Vaulted Ver-
ification, a novel remote matching protocol, to work with
iris biometrics in a network authentication setting. We give
an overview of how Vaulted Verification works and show
how to adapt it to the unique challenges of iris biometrics.
We then investigate the algorithm’s security and evaluate
its performance, showing that Vaulted Verification is among
the top-performing template protection algorithms for the
CASIAv1 dataset. We conclude with a summary and ideas
for future work.

1. Introduction

Iris matching systems are seeing increasingly common
use; as such, it is important that they operate efficiently
and accurately. However, they must also take care to ad-
dress privacy issues, especially in a network-aware setting.
This paper presents a new approach to building an accu-
rate, private, and secure iris verification system, capable of
remotely matching a subject’s iris without compromising
their privacy.

Consider Chris (C), the client, who wishes to biometri-
cally verify his identity using, say, his mobile phone and/or
passport which contains an iris template. Chris has concerns
about his privacy and how any server, such as his bank,
uses/stores his biometric. For instance, Chris, having read
[5], wishes the matching to be done on his phone, but he
also wants to ensure that the design prevents attackers from
gaining access to his biometrics—he only has two irises,
and he cannot change them. Chris also wants to be able to
cancel his template simply by forgetting his password, and
his canceled template should be worthless to anyone who
finds it.

The server to which Chris is authenticating, say B (e.g.

for bank) has security concerns. Ideally, their authentication
system should properly resist man-in-the-middle and replay
attacks, preventing attackers from reusing stale authentica-
tion data. They also wish to ensure that no one else can use
Chris’ identity, whether intentionally or unintentionally; ac-
cepting impostors is also a significant security risk. For B,
it must be possible for all of these requirements to be met
without a significant drop in accuracy of the biometric ver-
ification. As B does not control the matching process, it
needs strong assurance that a high-quality match happened
in Chris’ device, even if Chris wishes to share his identity
with a friend. Traditional iris biometrics cannot be used
directly because these require Chris to send his iris to the
server or for the server to blindly trust his phone’s yes/no
decision or match score.

Our main novel contribution is creating a client/server
protocol for iris-based authentication that addresses these
issues while increasing performance. In fact, this protocol
provides an increase in accuracy over the baseline system.
To do this, we adapt “Vaulted Verification,” introduced in
[21], to work with iris codes. We then investigate this proto-
col’s security from an attacker’s point of view and evaluate
its performance on the CASIAv1 iris dataset.

2. State-of-the-Art Private Iris Verification

Iris verification is a growing field, and many advances
have already been made in the realm of privacy protection
for Iris templates. Some previous techniques are based on
random projection, applying a randomly-generated orthog-
onal matrix to an iris feature vector. This is a non-invertible
transformation that discards information, and as such, sacri-
fices performance. [13] is one such example that randomly
projects segments of the iris data. More recently, [14] im-
proves on earlier work, reporting TAR=98.13 at FAR=0.001
on the ICE2005 dataset. Unfortunately, techniques based on
random projections may be compromised by ICA-based at-
tacks, and as such, may have unsolved security issues [3, 9].
Other transform schemes such as [15, 24] reduce iris data in
such a way that they significantly reduce performance com-
pared to the baseline algorithm.



Because iris codes are generally represented as bit vec-
tors, there are many groups that have looked at mappings
between iris codes and cryptographic keys. Some privacy-
enhanced iris verification systems bind pre-existing crypto-
graphic keys with iris codes (“key-binding biometric cryp-
tosystems”), while others derive cryptographic keys from
the iris code itself (“key-generating biometric cryptosys-
tems”). Both systems typically use error correction to ac-
count for the inherent variability of the iris, but to date none
have acceptable accuracy.

An example of a key-generating system, [4] uses a
“fuzzy extractor” scheme deriving a key from an iris code
and helper data. The performance is weak—TAR=88.9%
when FAR=1.35% on a small subset of CASIA.

There is much research in the area of key-binding iris
cryptosystems. Fuzzy commitment schemes such as [1, 22]
bind the iris with a cryptographic key expressed as an er-
ror correcting code. However, these techniques have se-
curity problems; [16, 23] presents attacks against fuzzy
commitment schemes. According to [23], one reason that
makes fuzzy commitment weak for irises is because iris
codes generated from Gabor features can be seen as Markov
models—the bits in an iris code are not uniformly indepen-
dently distributed, allowing an attacker to exploit the error
correction to their advantage. Some schemes shuffle the
iris codes to remove the local dependency of bits [7]. This
helps better separate the inter-class and intra-class match
score distributions and also enables revocability, if the key
for shuffling is an un-stored user secret. [23] reports that
permuting iris codes removes the local dependency, but it
asserts that shuffling does not completely protect against
fuzzy commitment attacks because permutation is a linear,
invertible transform.

Other systems allow classification to happen on the
server by running classifiers on encrypted or transformed
data. For example, “Blind Authentication” [20] is a general
purpose authentication protocol based on homomorphic en-
cryption. Though the work is intended for many biometric
modalities, it implements an SVM-based iris classification
system. The performance of the iris SVM is weak, with
true-accept rates of roughly 65% at 0.1% FAR.

Some research focuses on using fuzzy vaults to bind the
cryptographic key to a set of points on an over-determined
polynomial. Many approaches on fuzzy vaults use multiple
biometrics to improve accuracy, such as [11]. For their iris-
only vault, Iris GAR = 88% when FAR ⇡ 0.01% with 41
bits of security; the multibiometric vault had much higher
performance. Some approaches such as [17] use minutiae
points on structures from four quadrants of the iris. The
resulting four vaults are then hardened with user passwords.
They report roughly 87.2% TAR at 0.26% FAR. Using non-
bit features, [8] performs ICA on “clustered” iris blocks to
extract features, binding them with a 128-bit key with an

accuracy of TAR=99.225% when FAR=0% on the BERC
dataset. Unfortunately, techniques based on fuzzy vaults
tend to have multiple unresolved security issues [19]; thus,
while the above have some reasonable accuracy, they are
not as secure/private as originally suggested. The proposed
vaulted verification technique is similar to the concept of
fuzzy vaults, but it addresses the known security concerns.

3. Vaulted Verification

Our contribution is a generalization of the Vaulted Veri-
fication protocol, adapted for iris recognition. Vaulted Ver-
ification was first introduced in [21] as a means for remote
authentication between a client (C) claiming an identity and
a server (B) verifying the client’s claim. Vaulted Verifica-
tion enables the server to ensure authentication using the
client’s biometric in a privacy-preserving way. While [21]
presented only a reference face verifier using SVM classi-
fiers, we will show that the approach is adaptable to other
modalities such as iris codes.

The core concept behind vaulted verification is a mixture
of multiple layers including the “chaffing and winnowing”
technique described in [18] and the polynomial reconstruc-
tion technique from [6]. The main idea is to split a biometric
sample into several parts, forcing the client to discriminate
between the real and artificial chaff parts. To create a tem-
plate, the enroller starts with a real feature vector from the
subject and generates a chaff feature vector. The enroller
then chops each vector into several “blocklets”. These real
and chaff blocklets are grouped into blocks; each block of
the template associates one real blocklet to its correspond-
ing chaff blocklet. From an attacker’s point of view, the real
and chaff blocklets look alike, so the attacker cannot tell
the real from the chaff. From the client’s point of view, the
client can use their biometric data to decide which blocklets
are real and which are chaff.

Using blocks in this way enables the server to perform
a challenge-response authentication, wherein the client per-
forms the matching process and can return a value based on
the challenge to prove its result. To authenticate a poten-
tial client, the server creates a random challenge-response
bitstring of n bits, where n is the number of blocks in the
template. The server then creates a new, “scrambled” tem-
plate: if the ith bit of the bitstring is 1, the server swaps
the order of the real and chaff blocklets in the ith block of
the template. If the ith bit is 0, the server leaves the ith
block alone. Thus, assuming a random distribution of bits,
approximately n/2 blocks in the template will be swapped.
The server then sends this swapped template—now acting
as the challenge—back to the client. It’s the client’s job to
use that template to find the challenge-response bitstring.
The client looks at each block of the swapped template and
decides which blocklet is real and which is chaff by compar-
ing each blocklet to the subject’s biometric sample. Because



Figure 1. Overview of a simplified version of the vaulted verifi-
cation authentication process. The server creates a challenge bit-
string and swaps some blocks in the template, sending the swapped
template to the client. The client compares each blocklet in the
swapped template against a probe, using the similarity scores and
error correction to recover the challenge bitstring. See Section 3.1
for details.

the client knows how the template was initially constructed,
it can find which blocks have been swapped and which have
not; thus, it can recover the bits of the bitstring and can send
a hash of these bits back to the server, proving its identity.
See Fig. 1 for an overview of the authentication process.

Because the server is only changing the structure of the
template and is not changing its contents, the server does
not need access to the encrypted content of actual block-
lets, nor does it need to concern itself with the classifica-
tion strategy—the client can use any modality or classifier
to prove its identity to the server. This also means that the
client can encrypt each blocklet in the template with a key
that the server does not have, thus protecting the biometric
features from attackers and malicious server operators.

This is the gist of the Vaulted Verification concept. Note
that the actual protocol differs from the overview presented
above in a number of subtle but important ways that are be-
yond the scope of this paper. In the remainder, we examine
the iris biometric aspects of the protocol and take a detailed
look at the enrollment and authentication process.

3.1. The Enrollment Process

For our experiments, we used Libor Masek’s widespread
open-source MATLAB iris recognition system [10]. While
our approach would work with more effective techniques,
use of this open-source solution will aid in comparison and
reproducibility of this research.

Masek’s system uses a Hough transform to segment the

boundaries between the pupil, iris, and sclera. The image is
transformed into a 2D rectangular Cartesian representation
using Daugman’s rubber sheet model. The eyelids, spec-
ular reflections, and eyelashes are segmented into a mask,
and the iris code is created by quantizing real and imag-
inary responses to 1D Log-Gabor wavelets. The final re-
sult is a 2D iris code and a 2D mask.We used suggested
parameters of a radial resolution of 20 pixels and an angu-
lar resolution of 240 pixels yielding a 9600 bits iris code.
We used one filter with center wavelength = 18px and filter
bandwidth �

f

=0.5. These parameters are close to optimal
for the CASIAv1 dataset using Masek’s algorithm [10, 12].
To compare two templates, Masek’s system compares the
hamming distances of the two iris codes, only considering
the bits that are contained within both masks. Masek’s fi-
nal baseline classification score is the ratio of the hamming
distance to the number of unmasked bits.

In our vaulted verification system, our first task, given
an enrollment iris sample using Masek’s system, is to gen-
erate a list of real blocklets for the template. Let B

i

be the
ith bit in the 1-dimensional raveled iris code (concatenating
each row), and let M

i

be the ith bit in the raveled mask.
Our task is to split B and M into n blocklets. One naı̈ve
approach is to simply split B and M into n pieces, storing
{(B

j

,M

j

) | 9600(x � 1)/n  j < 9600x/n} inside the
xth blocklet. This is simple to implement, but has the dis-
advantage that each blocklet may contain a different num-
ber of useful bits. Generally, the mask contains sections of
consecutive masked bits due to the large eyelids; thus, some
blocklets often wind up with no useful bits at all. To prevent
this from happening, each blocklet in the proposed system
stores only unmasked (useful) bits along with a mapping
that relates the index of each bit to its original place in the
image. If B

i

is the ith bit in the raveled code, then the code
is transformed into C = {(B

i

, i) | 0  i < 9600,M
i

= 1};
ie. the unmasked bits and their raveled indices. This new
code/mapping is then permuted (randomly shuffled) to cre-
ate C

0. The shuffling order is determined by a mixture
of a device-specific key and the user’s passphrase. This
does three things: First, it ensures that each blocklet does
not refer to contiguous parts of the iris code, thus avoid-
ing the contiguous masked (eyelid) region problem when
matching against the probe. Second, shuffling removes
the local dependency—important because consecutive bits
of iris codes are not uniformly independently distributed
[7]. Third, shuffling ensures that each generated template
has vastly different data, thus helping to remove linkability
among different encrypted templates of the same subject.

The final permuted iris code/map, C 0, is then chopped
into n blocklets. Let k be the length of C 0 (that is, the num-
ber of unmasked bits), so each blocklet has k

n

useful bits of
the code. Thus, blocklet R

x

= {C 0
i

| x k

n

< i < (x+ 1) k
n

}.
Each of these n blocklets comprise the real parts of the tem-



Figure 2. Deriving Vaulted Verification blocklets from iris codes.
The code and mask is raveled, and masked bits are deleted. The
resulting code and the indices are randomly permuted and split
into blocklets.

plate. See Fig. 2 for a visual depiction of how we turn iris
codes into template blocklets.

For each real blocklet R
x

, we must create a correspond-
ing chaff blocklet C

x

. The original algorithm [21] randomly
chose chaff from a fixed pool of chaff subjects. This had
some disadvantages; namely, the need to create and store
a large chaff pool for the enroller and concerns about the
non-uniqueness of chaff samples. Thus, we use artificial
chaff in our proposed scheme. To derive the corresponding
chaff blocklet C

x

for R
x

, we copy the map from R

x

and
use uniformly distributed random bits. Because half of the
bits between any two templates match on average, [2], an
attacker cannot tell the difference between an R

x

and C

x

.
So far, our template contains a list of blocks with real

and chaff blocklets (R
x

, C

x

). Each blocklet is then infused
with error correction information. The original scheme [21]
stored a point on f inside each blocklet, where f was an
over-determined polynomial of degree d. Each chaff block-
let contained a random point. A hash of f ’s coefficients,
HASH(f), was also stored inside the template. If the client
correctly guessed d + 1 points in the template, it could use
a “homing” error correcting search to recover the coeffi-
cients and thus recover every block. In our iris experiments,
we opt to use a more conventional forward error-correction
strategy based on 8-bit Reed-Solomon (RS) codes. Let p
be a parity parameter fixed at enrollment time. We then
construct n � p random symbols S

i

2 {1, 2, . . . 255} (the
“payload”) which is then encoded with 8-bit Reed-Solomon
encoding to create a message, D, with n symbols. This
way, we can correct up to p

2 errors in a corrupted D

0. We
then embed each symbol of D in each real blocklet, and we
embed a random symbol, different from D

i

, in the ith chaff
blocklet in the template. The template now contains the list
of blocklets and HASH(D), for verification.

Each blocklet is then individually encrypted with a
client-specific private key as in [21]. The per-blocklet en-
cryption protects the client’s privacy from the server. Once
this is done, the enroller performs one last step before stor-
ing the template. As it stands, each block contains its real
blocklet first. This means that if an attacker acquires the
template, they would be able to tell which encrypted block-
lets are real and which are chaff, even though they could
not decode the contents. To avoid this, the client performs
a scrambling operation. Let S be an n-bit random key, cho-
sen by the client (e.g. related to C

0’s permutation key and
the symbols in D). For each block, if S

i

is 1, then the client
swaps the encrypted real and chaff blocklets inside block i.

This final template contains HASH(D) along with n

blocks containing swapped blocklets, each blocklet element
being separately encrypted. Each blocklet either contains
D

i

and parts of the iris code with indices, or it contains a
random message symbol and the bits and indices from part
of a randomly generated iris. To prepare for storage, the
enroller encrypts this final template with the server’s pub-
lic key and stores it on the client’s device. The trusted en-
roller then computes a hash of the template, sending only
this hash to the server for storage. In this way, the server
does not store any templates. Except during a transaction,
the client’s template is never available to the server and an
attacker cannot recover the template without access to the
client’s device and the server’s private key. The client can-
not modify the template because it would no longer match
the server’s stored hash.

3.2. Authentication process

To match a template, the client initiates authentication
with the server by sending its encrypted template and the
client’s public key. The template was encrypted with the
server’s public key at enrollment, so the server verifies it
with the hash in its template database and decrypts the over-
all template (but cannot decrypt the individual blocklets).

From this point, we can split the process into the server’s
role, to generate the challenge-response token and trans-
form the template, and the client’s role, to respond with the
correct token by detecting the transformation.

The server starts by picking a random, session-local
string (call it nonce). The server then creates a challenge
bitstring of n bits, call it C. The server uses C to create
a transaction-specific swapped template. As stated previ-
ously, if C

i

is 1, the server will swap the real and chaff
blocklets in the ith block; if C

i

is 0, the ith block will not
be swapped. The server builds a message containing the
swapped blocks and nonce, encrypting the message with
the client’s public key. The server sends this encrypted mes-
sage to the client and waits for it to respond. The server is
expecting a response of

HASH(HASH(D) || nonce || C). (1)



where || denotes concatenation. The server has all the pieces
necessary to validate the client’s answer – nonce and C are
chosen at the beginning of the session, and HASH(D) is
stored in the template. The client must recover nonce, C
and HASH(D) using its private key, biometric and the ECC
data. The server indicates a positive authentication if and
only if the client’s response equals the expected response.

The client’s role is marginally more complex. First,
the client decrypts the message to recover nonce and the
swapped blocks. It must then find C using its probe bio-
metric sample. To decide which blocklet in each block is
real or chaff, the client decrypts each blocklet, yielding bits
T and the mapping N . Let B0 be the 9600 bits in the probe
biometric sample, and let M 0 be the probe’s mask. Each
blocklet’s similarity score is

score = 1�
k(T

x

�B

0
N

x

) ^M

0
N

x

k
kM 0

N

x

k (2)

where k↵
x

k denotes the number of 1 bits in ↵ for x <

LENGTH(↵). This way, the client finds scores for both
blocklets in each block. The blocklet with the higher score
is assumed to be the real blocklet, and the lower-scoring
blocklet is assumed to be chaff.

Once the client has these choices, it constructs D0 using
the message symbols inside the suspected real blocklets. As
long as n � p

2 guesses are correct, the client can decode
the answer using RS decoding to retrieve D. This process
reveals the actual symbols in the real message, thus show-
ing the client which blocklets are real and which are chaff.
From there, the client can use their knowledge of S to derive
the swapping used in the original template, and can trivially
compute C and HASH(D). Iris images tend to have a small
amount of variable rotation. As such, the client performs
16 trials per probe, shifting B

0 left by up to 8 bits and right
by up to 8 bits. This yields 16 lists of scores per block per
rotation. The client can choose the rotation that unlocks D.

4. Security

To show how Vaulted Verification resists attacks of vary-
ing sophistication, we start by examining the security of the
scheme from an attacker’s point of view.

If an attacker has no encryption keys but has a copy of
the stored template, they cannot acquire or discern the sub-
ject’s iris codes. To show this, we see that by default, the
attacker cannot discern any of the iris codes contained in
the blocklets because they are encrypted with the client’s
key and the template is encrypted with the server’s key. Be-
cause we assume the attacker cannot decrypt a ciphertext
without possessing the key, the subject’s iris code is secure.

The server (or an attacker) also cannot run an automated
verification attack because they do not have enough infor-
mation to perform a classification; they cannot compare the
encrypted blocklets to an arbitrary probe.

Finally, the attacker cannot authenticate as a client.
To see why, recall that our protocol requires the attacker
to present HASH(HASH(D)||nonce||C). We know that
HASH(D) is encrypted in the template with the server’s
key; it is irrecoverable. C is derived only from the canon-
ical swapping S and knowledge of which blocks are real
and chaff in each pair. If we assume the attacker does not
have D, S, or the client’s key, it cannot find C. Further,
without a probe sample, the attacker’s chances of guessing
C is equal to 1

2N , and the attacker cannot verify his answer
without sending it to the server and waiting for an authen-
tication decision. An attacker cannot begin an authentica-
tion attempt with the server because it does not have the
encrypted template. Thus, by default, security is preserved.

4.1. Man-in-the-Middle and Replay Attacks

Having shown our system’s security in the default case,
we now gradually give the attacker more information, eval-
uating the security of our algorithm at each step.

Throughout the authentication process, we assume that
the client and server communicate within a properly imple-
mented encryption protocol (SSL or TLS, for example) such
that the client can verify the server’s identity.

If an attacker gains the ability to subvert the network
connection between the client and server by monitoring or
impersonating a server or staging a man-in-the-middle at-
tack, the attacker still cannot acquire the subject’s iris code,
they cannot successfully impersonate the server without the
client’s knowledge, and they cannot gain any information
that helps in future authentication processes.

To see why, consider that when the attacker mounts their
network attack, they can see the encrypted template as it
first passes from the client to the server. This does not
help them because the template is still encrypted with the
server’s public key. The man-in-the-middle attacker could
record each encrypted blocklet in the swapped template
along with the session-local nonce, and then pass these to
the client. Because C and nonce is random for each ses-
sion, this knowledge does not foster a replay attack since
the template is swapped differently from session to session.
However, because only the ordering of the encrypted block-
lets changes, the attacker can now watch two transactions
and see whether they have the same encrypted blocklets;
thus, an attacker can tell when two authentication attempts
try to claim the same identity producing a weak linkability.

After the server sends the transformed template, the
client’s only response is HASH(HASH(D)||nonce||C). As-
suming that HASH is a one-way function and assuming that
nonce and C are unique to each session, the attacker can-
not learn anything about D or C from the client’s response;
thus, all information the attacker receives is not useful in
future responses.

Finally, the attacker cannot pose as the server because
it cannot decrypt the template at the start of the protocol



without the server’s private key.

4.2. Server Encryption and Client Storage

To decrypt the template, the attacker needs access to both
the server’s private key and the client’s device. We expect
that only highly determined attackers will get this far, but
what information do they gain if they have the server’s key
and the template? For example, what if the attacker has
compromised the server? Recall that the template contains
HASH(D) and the encrypted blocklets. At this point, the at-
tacker is capable of authenticating as the client. This is be-
cause the client’s response is HASH(HASH(D)||nonce||C).
The attacker has HASH(D) because it is stored in the tem-
plate. The attacker can find C because it’s implicit in the
change of structure between the original template and the
swapped template sent by the server. The server picks
nonce, so it would be known if the server is compromised.

The attacker can now authenticate as the subject for this
particular server, but he or she still cannot recover the sub-
ject’s original iris code or impersonate them on another
server. He/she does not have the ability to decrypt the block-
lets because they are encrypted with the client’s private key.
The attacker also does not know which are real and which
are chaff because S is derived from the client’s keys and/or
passphrase. If there was reason to believe the server was
compromised, the template can be revoked and reissued.

4.3. Client Encryption

What can the attacker gain if they acquire the ability to
completely remove all encryption by stealing the template,
the server’s key, and the client’s keys? At this point, the
attacker knows the decrypted blocklets but cannot discern
between the real and chaff because he or she does not know
S. Thus, the biometric is still obscured, but only by the
scrambling and the presence of chaff. If the attacker wishes
to find which blocks comprise real and which blocks com-
prise chaff, he or she now has the ability to launch an offline
brute-force attack. This attack can be performed without
any intervention or knowledge from the client or the server.
To find the real and the chaff, the attacker constructs D0 by
picking one symbol from all n blocks of the template. The
attacker can then try to decode D using the Reed-Solomon
decoding process. If D

0 decodes, the attacker can verify
their guess by comparing HASH(RSDECODE(D0)) against
HASH(D). Once the attacker has the symbols that comprise
D, the attacker knows know which blocks are real, and can
extract the iris code and mapping.

With this strategy, an attacker must make, on average,
2n�p/2�1 guesses before they correctly find D. For a tem-
plate with 128 blocks and p = 54 capable of correcting
27 errors, the attacker must enumerate an average of 2100
possible combinations of symbols in a brute force attack.
This is not impossible with today’s computing power, but
recall that to get to this level, we have already presumed

the attacker has gained physical access to the client’s device
and obtained the client’s passphrase to retrieve the client’s
private key. The attacker has also compromised the server
or acquired a copy of the encrypted template along with the
server’s private key. If we move to 256 blocks, we can make
this brute force attack impractical for decades to come.

5. Evaluation

Accuracy is a critical security concern. How well does
our iris verification system perform? To evaluate the per-
formance of our approach, we tested our proposed sys-
tem on CASIAv1. Masek [10] used a custom subset of
CASIAv1, dubbed CASIA-a, which contained the 624 well-
segmented, manually checked irises correctly found by his
segmentation algorithm. Masek’s segmentation algorithm
has about 83% accuracy. Because we do not know which
images from CASIAv1 comprise CASIA-a, we used our
own subset in these experiments, dubbed CASIA-b, that’s
substantially similar to CASIA-a but with 655 images from
106 subjects. Like Masek’s approach, we manually veri-
fied the segmented irises, but since our database includes
24 more images, we cannot directly compare our results
with Masek’s originally reported performance. However,
since our goal is understanding Vaulted Verification’s im-
pact on the accuracy, and because we are using Masek’s
original code, it’s not critical that we exactly match that per-
formance. What will matter is the change in performance as
we add privacy protection.

The experimental protocol dictates that all possible
image-image comparisons in the database should be taken.
Two images that are taken from the same subject count as
a true accept or false reject, and two images from differ-
ent subjects count as a true reject or false accept, depending
on the algorithm’s decision. Using the open-source imple-
mentation of Masek’s algorithm yields a true accept rate of
92.056% at 0.100% FAR on CASIA-b. It is well-known that
segmentation has a large impact on iris verification perfor-
mance [12], particularly for verification problems because
the worst-quality images in the database hurt the true accept
rate. Improved segmentation for CASIA-b would likely im-
prove performance as we only removed the obviously failed
segmentations. The distribution of our “Masek baseline” is
shown at the top of Figure 4.

It’s important to note that in our experiments, we assume
that the attacker has access to all user keys and passwords—
these results show Vaulted Verification’s ability to withstand
a stolen token attack. If the attacker does not have access to
the subject’s passwords and other authentication data, we
expect the false accept rate to be 0 because the attacker can-
not decrypt each blocklet and thus has a minimal chance of
guessing C and HASH(D).

Though Vaulted Verification is general enough to apply
to many different biometric modalities, it makes the as-



Figure 3. Distribution of match scores in the “baseline” split ex-
periment with no ECC on CASIA-b, along with a close-up of the
area between impostor and subject scores.

Figure 4. Score distributions on CASIA-b. Masek baseline is on
top. When compared to Figure 3, we see that shuffling (middle)
and splitting the iris code into more albeit smaller blocks (bottom)
has a large impact on the distribution.

sumption that splitting the template into several blocks does
not hurt performance. To measure the impact of this as-
sumption, we conducted a “baseline split” experiment by
converting irises into 128 blocks as described in Section
3.1. The final score is the number of real blocklets in the
template that match the probe. No error correction informa-
tion is used, and no challenge/response is performed. Thus,
this experiment does not test Vaulted Verification’s perfor-
mance; rather, it tests how the block-splitting assumption
impacts iris verification performance in general. From Fig-
ure 3, we see that the impostor scores are centered at 64
matching blocks (as expected), but the vast majority of the
subject templates match all 128 blocks. This is a vastly dif-
ferent distribution than most iris recognition systems, and
we believe it happens this way for two reasons: First, con-
solidating 7424 bits (the average number of unmasked bits
across CASIA-b) into 128 blocks tends to exaggerate the
difference between real and chaff scores. An attacker, on
average, will only match 50% of the bits and thus 50% of
the blocks, but the honest subject now has many more op-
portunities per block to distinguish between real and chaff
because each block now contains up to 7424

128 = 58 good bits.
Second, randomly permuting the code distributes more use-
ful data to each block. Without this shuffling, all of the
bits inside each block may fall within the probe’s eyelid
or in other large scale differences. This experiment out-
performed Masek’s baseline with 98.889% TAR at 0.138%
FAR on CASIA-b. For reproducibility, we note that on all of

Figure 5. ROC of various algorithms on CASIA-b.

CASIAv1, including badly segmented irises, our algorithm
performed at 90.234% TAR at 0.119% FAR.

To test this reasoning, we ran experiments without the
shuffling step; see Figure 4 (middle). As expected, per-
formance of this baseline without shuffling decreases when
compared to the shuffled performance, with TAR=97.695%
at FAR=0.148%. We additionally tried shuffling but with
a smaller blocklet size; at 256 blocks, the number of good
bits per blocklet falls to roughly 29 (CASIA-b has 7424 un-
masked bits per sample on average, divided by 256 block-
lets). The performance is 98.861% TAR at 0.12% FAR,
comparable to the shuffled 128-block template. Figure 4
(bottom) shows the resulting distribution. Note that both
of these changes alter the genuine score distribution when
compared with Masek’s algorithm. We see that even with-
out shuffling the code, consolidating 7424 bits into 128
blocks increases the distance between subject and impostor
scores compared to our Masek baseline, and this distance
is exaggerated further when the shuffling step is performed
in Figure 3. When we increase the number of blocks to
256, we see that the score distance between real and chaff
is altered, but the performance is not significantly reduced
because the tail of the distributions has a greater impact on
performance than the mean of the distributions. Note that
a similar separation phenomenon due to shuffling was ob-
served in [7]. The resulting ROC of these experiments is
shown on Figure 5.

Finally, we perform the Vaulted Verification experiment
several times, varying the ECC parameter and showing the
resulting ROC in 5. This experiment assumes the attacker
has all keys and only tests the biometric’s ability to secure
the ECC data in the template. Note that this curve on the
ROC is not monotonic because at such low FAR rates, the
different random permutations of C have a great effect on
the tail of the impostor’s scores, which vary between tests.
We varied the ECC parity as the threshold; for example, at
p = 30, subjects and impostors can correct up to 15 in-
correct bits for a total security of 128 � 15 = 113 bits.
At higher FAR, this closely approximates our 128 shuffled



block baseline. On CASIA-b at these parameters, our al-
gorithm performs at 94.02% TAR when FAR=0.0002% at
115 bits of security, and 98.22% when FAR=0.0310% at
105 bits of security. For reproducibility, we note that on
CASIAv1 including badly segmented irises, for 115 bits of
security, FAR=0 and TAR=81.72%; for 108 bits of security,
TAR=87.80% and FAR=0.0125%. Using error correction
in this way allows us to guarantee that the client can decode
all the blocks in the template at the given level of ECC. This
has advantages in the protocol as discussed in Section 4. We
did not perform ECC on the shuffled 256-block experiment
because 128-bit ECC did not significantly impact perfor-
mance; we would expect similar performance from 256.

6. Conclusions and Future Work

In this work, we have shown how to create an iris veri-
fication system adapted to the unique privacy and security
requirements of remote authentication. We showed Vaulted
Verification’s privacy and security and demonstrated its
accuracy on the CASIAv1 iris database. We found that
Vaulted Verification outperformed the baseline when using
128 shuffled blocks. In the future, we wish to find the op-
timal template block count and to explore the accuracy of
the system across many different iris feature extraction al-
gorithms and better iris segmentation algorithms. In addi-
tion, we also wish to investigate performance on a variety of
Reed-Solomon parameters. We also want to investigate how
Vaulted Verification can be used for liveness detection, and
how to adapt Vaulted Verification to more biometric modal-
ities.
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