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ABSTRACT

Deriving relationships between images and tracing back their his-
tory of modifications are at the core of Multimedia Phylogeny solu-
tions, which aim to combat misinformation through doctored visual
media. Nonetheless, most recent image phylogeny solutions can-
not properly address cases of forged composite images with multiple
donors, an area known as multiple parenting phylogeny (MPP). This
paper presents a preliminary undirected graph construction solution
for MPP, without any strict assumptions. The algorithm is under-
pinned by robust image representative keypoints and different geo-
metric consistency checks among matching regions in both images
to provide regions of interest for direct comparison. The paper intro-
duces a novel technique to geometrically filter the most promising
matches as well as to aid in the shared region localization task. The
strength of the approach is corroborated by experiments with real-
world cases, with and without image distractors (unrelated cases).

Index Terms— Image Phylogeny, Media Forensics, Undirected
Phylogeny Graph.

1. INTRODUCTION

One key concern in digital forensics nowadays is how to fight propa-
ganda and misinformation through visual media. With online visual
content easily accessible, their reuse and iterative upload and down-
load naturally lead to the presence of multiple copies of a single
object. These copies can be generated through a series of transfor-
mations solely from an original image r (so-called near duplicates),
from different originals r

i

and r

j

depicting nearly the same scene
but each of which with its own chain of modifications (so-called
semantically-similar images) or be combined with various other im-
age donors d

i

(generating composite images). Dias et al. [1] studied
near-duplicate images and proposed a method to find their kinship
relationships or the directions of modifications (and transformations)
over time, terming such analysis as image phylogeny. Semantically-
similar images were studied in a follow-up work [2].

Extending those works, Oliveira et. al [3] formalized cases of
image forgeries and compositions with what they called Multiple
Parenting Phylogeny (MPP). In an MPP setup, an image can be de-
rived from multiple donors and thus its content might have common
pieces with all those donors. Moreover, each composite and donor
image might have its own chain of near duplicates and semantically-
similar images. However, the best MPP solution that exists to date
works only with bi-composite images (images that have two par-
ents — a host and a donor image), which solves only a restricted
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Fig. 1. Different stages of the proposed pipeline for provenance
graph building of a given query and its possible donors. Upon
searching an image collection and retrieving possible donors, we
compare candidates pairwise through the matching of representa-
tive keypoints, geometrically check the consistency among possi-
ble matches and build a weighted dissimilarity matrix representing
all possible pairwise relationships. Ultimately, we use a spanning
tree to find the connected components related (and unrelated) to the
query. Note: GCM stands for geometrically consistent matches.

case of MPP, leaving the more difficult general problem still largely
untouched. With donors from multiple images, the information re-
quired to estimate the correct transformations to map an image onto
each of its possible donors, might not be present, rendering existing
MPP solutions inadequate for use in such cases.

Multimedia phylogeny solutions can be useful in detecting vi-
sual media frauds, preventing propaganda and misinformation dis-
semination, and resolving news media controversies. Therefore, it is
important to devise methods that generalize to different image trans-
formations as well as to any number of possible donors. Updating
some terminology used in [3] and [4], for this work, rather than dif-
ferentiating a donor as a possible host (donor of the background of a
composite) or alien (additional donors), all images contributing to a
composite image are simply referred to as donor images (DIs). The
composite image is called a multi-composite image (MCI) (See Fig.
2).

Inferring directions to connections in the phylogeny graph of an
unrelated set of images is difficult as the irrelevant images add noise
to the process. Building an undirected graph first helps to reduce
the uncertainty in direction finding and is more efficient (in terms of
number of image comparisons) for large sets of images than directed
phylogeny graph construction. Once the connections are obtained,
localized techniques can be devised for pointing out the directions;
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Fig. 2. Undirected phylogeny graph for the case of bi-composite
(e.g., node 6) and multi-composite images (e.g., node 7). Examples
from NIST NC2017 dataset [5].

human experts may also be an option.
In this paper, we propose an algorithm for Phylogeny Graph

Construction that aims at building an undirected graph showing the
relationships among images using spatial information provided by
representative keypoints and the consistency of their matches. The
method eliminates some assumptions made in prior work and gen-
eralizes to any set of images, hence ”in the wild”. The paper also
presents results on a difficult dataset recently released by the Na-
tional Institute of Standards and Technology (NIST) and proposes
new metrics for evaluation of Image Phylogeny tasks. Instead of re-
placing all components of the existing work [4], we build upon them
with generalization in mind and extend specific pieces of the method
to deal with multiple donors and any kind of image transformation.
Fig. 1 shows the end-to-end pipeline we propose. For this paper,
we assume an efficient system for Phase 1 (retrieving images from
a collection) and use its result (top-k related images to the query) as
input for our algorithm.

2. RELATED WORK

Finding parental relationships between images was first explored by
Kennedy and Chang [6] with Visual Migration Maps (VMMs) used
to select images of interest from a given set of candidates. The main
problem with VMMs, however, is the need of detectors for each
image transformation, constraining the representation power of the
graph to the detectors in place. In turn, De Rosa et. al [7] compared
pairs of images using both the image content and the noise informa-
tion to find possible dependencies.

The Multimedia Phylogeny term was introduced by Dias et
al. [8] in their work with image phylogeny tree reconstruction with
near-duplicate images. Subsequent work introduced solutions for
multiple trees [1] and multiple trees with semantically-similar im-
ages [2]. None of the works, however, considered images with
multiple parents, and so their solutions were in the form of trees.

Phylogeny (or provenance) graph construction for a more preva-
lent case of forgery in which objects from one image are spliced into
another, was addressed by Oliveira et al. in their recent papers on
multiple parenting phylogeny [3, 4], which are the most relevant to
our work herein. The authors propose a solution with a strict as-
sumption of two parents (one host and one alien) of a composite
image, and also with no unrelated images in the set. Moreover, the
authors assume a fixed set of possible transformations that allow an
image to be considered as the near duplicate of another resampling,
cropping and affine transformation, contrast, brightness, gamma cor-
rection, and compression (as defined in [1]).

Existing image phylogeny methods mainly focus on two steps
to find the provenance graph: (i) computing the dissimilarity ma-

trix for all images in a collection; and (ii) building a directed graph
using a spanning tree algorithm. Step (i) is further divided in (a) de-
tecting matching keypoints for every pair of images; (b) estimating
the best geometric transformation between those sets of points and
warping one image onto the other; (c) matching color and compres-
sion parameters between the pairs of images; and (d) computing a
pixel-wise difference between the mapped images.

While Step (ii) has been “the” subject of research in prior work,
Step (i) has been overlooked, which has streamlined the research in
the field by far. The many constraints with the existing solutions ob-
fuscate the difficulties of the general MPP problem. Firstly, the set
of transformations is not exhaustive and there can be transformations
in real-world cases that have not been accounted for in the existing
literature. Secondly, the methods used for estimating the transfor-
mations might have some limitations since they are based on local
pixel information. Mapping the color distribution of content-related
regions, for instance, can be similar in both directions (e.g., with
reverse-prone transformations), thus not proving helpful or discrim-
inatory for kinship direction finding. In addition, the information re-
quired to perform compression mappings, such as the compression
table, might not be available for non-JPEG lossless-compressed im-
ages. Finally, there can be images completely unrelated (in terms of
sharing one scene but with similar color distribution) to the query, as
part of the result of the retrieval or the effect of the semantic gap [9].

3. PROPOSED SOLUTION

The proposed solution points out the undirected binary relations that
might exist among the elements of a given set of images, based on
their visual content. These relations aim at supporting the revela-
tion of the phylogeny of the images. As explained in Sec. 2, prior
work made strong assumptions regarding the probable phylogeny of
the images, advancing the state of the art up to the particular case of
donor-host composites. We extend the literature [4] toward the direc-
tion of analyzing more general composite cases, here called MCIs.

Fig. 1 outlines the main steps of the proposed solution. An end-
to-end implementation starts with a query image q of interest, whose
donors (if any) are to be discovered, together with possible near-
duplicates of the query and the donors. The first step involves query-
ing a large collection of images, for finding and sorting a list of the
top-k potentially related items, according to their similarity to the
query (c.f., Phase 1 in Fig. 1, and Sec. 3.1 for details). Once the top-
k related images to the query are retrieved, in Phase 2, we calculate
the dissimilarity of each pair of images, including the query. For this
step, we introduce novel strategies for computing dissimilarities and
constitute symmetric weighted adjacency matrices, which are robust
to varied image transformations, and rely upon image-pairwise key-
point detection, description, and geometrically consistent matching
(GCM). This method is termed as U-Phylogeny (Undirected Phy-
logeny). We also propose an extended U-Phylogeny by comput-
ing dissimilarity values using pixel-wise local dissimilarity compu-
tations after the GCM, as this might be useful in some situations, but
at the cost of an increased runtime (Sec. 3.2). This method can im-
prove the results since it has more knowledge about forgery through
transformations. Ultimately, in Phase 3, we estimate the query’s
provenance graph as a minimally connected undirected subgraph,
which can be presented to an expert, or be fed to a further forensic
image provenance oracle tool (Sec. 3.3).

3.1. Image Retrieval

Retrieving images related to the query image is the first step in the
end-to-end pipeline of generating a phylogenetic graph. Different



Table 1. Experiments without distractors using U-Phylogeny (proposed algorithm) and its different forms of calculating the dissimilarity
matrix. MSE denotes Mean Squared Error and GCM , Geometrically Consistent Matches.

Performance Without Distractor Images
Dissimilarity Metric Precision

edges

Recall
edges

V EO
Small Medium Large Small Medium Large Small Medium Large

Avg. Distance of GCM 0.62 ⌥0.20 0.47 ⌥0.08 0.31 ⌥0.16 0.62 ⌥0.20 0.48 ⌥0.08 0.32 ⌥0.16 0.82 ⌥0.09 0.75 ⌥0.04 0.66⌥0.08
Number of GCM 0.75 ⌥0.19 0.61 ⌥0.13 0.52 ⌥0.15 0.75 ⌥0.19 0.61 ⌥0.12 0.54 ⌥0.15 0.88 ⌥0.09 0.81 ⌥0.06 0.77 ⌥0.07

MSE 0.73 ⌥0.19 0.56 ⌥0.10 0.42 ⌥0.04 0.73 ⌥0.19 0.56 ⌥0.10 0.43 ⌥0.03 0.87 ⌥0.09 0.79 ⌥0.05 0.72 ⌥0.02
Mutual Information 0.76 ⌥0.17 0.64 ⌥0.16 0.57 ⌥0.12 0.76 ⌥0.17 0.65 ⌥0.16 0.58 ⌥0.11 0.89 ⌥0.08 0.83 ⌥0.08 0.79 ⌥0.06

Table 2. Experiments with distractors. MSE stands for Mean Squared Error and GCM stands for Geometrically Consistent Matches.
Performance With Distractor Images

Dissimilarity Metric Precision
nodes

Recall
nodes

Precision
edges

Recall
edges

V EO
Avg. Distance of GCM 0.98 ⌥0.05 1.00 ⌥0.00 0.56 ⌥0.16 0.55 ⌥0.18 0.79 ⌥0.07

Number of GCM 0.98 ⌥0.05 1.00 ⌥0.00 0.72 ⌥0.15 0.69 ⌥0.16 0.85 ⌥0.07
MSE 1.00 ⌥0.00 1.00 ⌥0.00 0.69 ⌥0.14 0.64 ⌥0.11 0.84 ⌥0.06

Mutual Information 1.00 ⌥0.00 1.00 ⌥0.00 0.78 ⌥0.15 0.72 ⌥0.12 0.88 ⌥0.06

context-based information retrieval algorithms [10, 11, 12] can be
adapted to tackle this part of the problem given large collections.
In this paper, we do not focus on this particular task and assume to
have been provided with a set of images after retrieval. The top-
retrieved images may or may not be related to the query. Prior work
on multiple parenting phylogeny [3, 4] did not consider unrelated
images thoroughly.

3.2. Computation of the Dissimilarity Matrix

Given a set of k images, a dissimilarity matrix D is a k ⇥ k matrix
with the value of dissimilarity between every pair of images from the
set. The matrix can be considered as a weighted adjacency matrix of
a graph, in which each image is a node and the values in the matrix
correspond to weights of edges between any two nodes. Each edge
weight is computed using the following steps:
Detection and Description of Points of Interest. Speeded Up Ro-
bust Features (SURF) [13] keypoints are detected on both images.
The SURF keypoints highlight the important regions within the im-
age content, and provide a description process and representation
that are robust to transformations [14].
Keypoint Matching. To find correspondences between the detected
keypoints in the two images, we compute the matches M between
the two sets of descriptors D1 and D2 that are obtained from the
previously detected keypoints. The first set is treated as the query
set and the other is treated as the gallery set. For each descriptor
d 2 D1, the best matching descriptor is found inside D2 using L2
distance. In addition, inspired by the Nearest Neighbor Distance
Ratio (NNDR) matching quality [15], we ignore all the keypoints
whose ratio of distances to their first and second matched descriptors
is smaller than an NNDR threshold t, implying that the keypoint
might be of poor distinctive quality.
Keypoint Match Filtering. Once the matches are established, upon
using NNDR, it is not uncommon to gather geometrically inconsis-

tent matches, thus there is the need to remove spurious matches that
are not truly representing the real transformations of one image onto
the other (e.g., crossing matches among two images). A contribution
of this paper is solving this problem with a filter of matched key-
points that keeps only the matches whose spatial dispositions are ge-
ometrically consistent in both images, say M

g

. To obtain M

g

, rather
than relying on the value of the matched image pixels, we rely upon
the spatial positions of the two best matched points p1(xp1, yp1) –
p2(xp2, yp2) in I1, and q1(xq1, yq1) – q2(xq2, yq2) in I2. By tak-
ing the positions, the distance l1, and the angle a1 between p1 and
q1 (all from image I1), as well as the positions, the distance l2, and

the angle a2 between p2 and q2 (all from image I2), we estimate the
constraints with respect to scale, translation, and rotation transfor-
mations, from I1 onto I2, thus applying them on all the keypoints of
I1. We then compare the new positions of I1 and the positions of
I2, and remove the keypoints (and respective matchings) that do not
follow the estimated constraints.
Dissimilarity. Finally, we compute the dissimilarity D1,2 between
the two images. For U-Phylogeny, we use the number of filtered (ge-
ometrically consistent) matches, M

g

and the average match score of
these matches as dissimilarity. Upon filtering the keypoint matches,
for the extended (more expensive) algorithm, a few more steps are
involved before computing the dissimilarity. The keypoints corre-
sponding to the filtered matches are used to estimate homography
between the two images. The images are registered based on the es-
timated parameters. Localized regions of interest (ROIs) are cropped
from the registered images by computing the bounding box of the
convex hull around the filtered keypoints.

The pixel value distribution of the two ROIs is matched using
a frequency-based histogram-matching approach. The method in-
volves computing the cumulative distribution for the pixel values for
both source and target images (in each image pair). Each pixel of
the source image is mapped onto the closest pixel value from the
same quantile of the target histogram. Since our dissimilarity matrix
is symmetric, the transformation only needs to be performed once
(either of the two images can be a source image). Then, we compute
the pixel-wise dissimilarity, in the form of Mutual Information and
MSE, between the mapped source image and the target image.

3.3. Phylogeny Graph Construction

Upon obtaining the complete dissimilarity matrix, Kruskal’s Mini-
mum Spanning Tree (MST) algorithm [16] is used to build an undi-
rected graph connecting all images. The method requires two inputs
– the number of retrieved images and the weighted adjacency matrix
containing real-valued finite weight for each edge. The output graph
is a binary adjacency matrix (BAM ) for which BAM

ij

is set to 1
whenever there is an edge (i.e., edge(i, j) 2 MST ).

4. EXPERIMENTAL SETUP

Datasets Used. For evaluation, we use NC2017-DEV2 dataset pro-
vided by the National Institute of Standards and Technology (NIST)
as part of the Nimble 2017 Challenge [5]. The dataset is divided
into query set (59 images) and gallery set (10446 images). Images
from the gallery set may or may not be related to the query set. The



dataset has 59 phylogeny cases with 750 images in total. The av-
erage graph order (i.e., the average number of related images) for
such cases is 12.7. The range of number of related images is [3, 82].
We organized such cases into three categories based on the number
of nodes — small (12 nodes), medium (13-20 nodes), and large
graphs (> 20 nodes).

To evaluate the robustness of the methods, we consider building
the graphs under the presence of unrelated images. For this partic-
ular experiment, we sample 20 cases with graph order  25. We
process 25 images each time, regardless of the variable size of the
provenance graphs. For instance, if we have a test case with 5 nodes,
we complete this case with 20 randomly selected distractors and per-
form the analysis considering 25 nodes in total. The materials for
reproducing this work are available at https://gitlab.com/
notredame-provenance/u-phylogeny.

Evaluation Metrics. Existing metrics for evaluating image phy-
logeny generally focus on the notion of image phylogeny trees [1]
and do not conform with undirected graphs as there is no notion of
roots, leaves or ancestors therein. Hence, we rely on more general
graph comparison metrics to evaluate results. We use precision and
recall of nodes and edges and a combined metric, Vertex and Edge
Overlap (VEO) as discussed in [17] in the context of web graphs.
For each provenance case, the values for these metrics are obtained
by comparing the output graph G

0 of a method with the ground truth
graph G using the formulae in Eqs. 1 and 2, where P and R stand
for precision and recall, respectively. Here, nd

G

0 denotes the set of
nodes (images) in graph G

0 while nd

G

denotes the same for graph
G. Precision and recall of edges is computed similarly.

P (nd) =
|nd

G

0 \ nd

G

|
|nd

G

0 | R(nd) =
|nd

G

0 \ nd

G

|
|nd

G

| (1)

V EO(G0
, G) = 2 ⇤

|nd
G

0 \ nd
G

| + |edges
G

0 \ edges
G

|
|nd

G

0 | + |nd
G

| + |edges
G

0 | + |edges
G

| (2)

The metrics take values in the range of 0 to 1. Higher values
indicate better performance. The overall values reported for these
metrics have been averaged over the three categories in the dataset.

Experimental Details. Upon receiving a list of images for phy-
logeny graph construction, we can have both related and unrelated
images and we need to refine the list to create the graph. With this
in mind, we divided the experiments into two setups:

1. Without Distractor Images. In this setup, all analyzed im-
ages for phylogeny graph construction are related to the query
image. Differently from prior work [4], there might be multi-
ple donors for each given query.

2. With Distractor Images. This scenario comprises possible
failures in the retrieval of possibly related images and eval-
uates the performance of U-Phylogeny and its extensions in
the presence of related and unrelated images.

For the dissimilarity matrix, we compute 2000 SURF keypoints
for each image. The quality of these keypoints is governed by the
hessian threshold (set to 100 to select the most important keypoints)
and NNDR (individually computed for each image based on the top
two-matched keypoints). Following [15], we use an NNDR thresh-
old t = 0.8. The detected keypoints are filtered using the three
parameters of rotation, scale and translation, individually computed
for each image. For the U -phylogeny version, we use the match
distance and count of these keypoints as dissimilarity.

For the extended version, the images are registered using the
affine transformation matrix estimated by these keypoints. After

cropping the regions of interest (ROI) and mapping the pixel dis-
tribution of one to another, the mutual information and MSE is com-
puted. These become the values of dissimilarity between the images.

5. RESULTS

Table 1 shows the result of Experiment 1. The Precision

nodes

and
Recall

nodes

values are not valid for this setup as it has no distrac-
tors. Observe that the version of our approach using the keypoint
information is on par with the extended version for small phylogeny
cases and slightly below par for medium and large cases. It is im-
portant to note that the extended version of our algorithm matches
the pixel color distribution as an additional step for each pair of im-
ages. The results show that the transformation mapping and pixel-
wise comparison improve upon U -Phylogeny. In addition, mutual
information of mapped pixel values outperforms the mean-squared-
difference. This result is consistent with the literature [4]. The
best performance for cases without any distractors is obtained with
mutual information as the dissimilarity metric for the extended U -
Phylogeny. Directly comparing our methods with [4] is not possible
as [4] assumes a fixed set of transforms and at most two donors.

The ‘in-the-wild’ evaluation of the methods uses the same phy-
logeny cases with added unrelated images (distractors). Table 2
shows the results for this experiment. In this case, we also report
the Precision

nodes

and Recall

nodes

, which represent the methods’
performance for connecting images that are related and leaving out
the unrelated ones. As can be seen from the values, the proposed
approach works remarkably well in getting the connected nodes. U -
Phylogeny also seems to be robust to distractors in terms of edges
and the extended version achieves an 88% of vertex and edge over-
lap, a significant result for image phylogeny graph construction. As
for efficiency, on an Intel(R) i7-5930K CPU 3.50GHz with 64GB
of RAM, U -phylogeny takes 3.8s to compare two images whilst the
extended version is twice as expensive.

6. DISCUSSION ON DIRECTION IN PHYLOGENY
GRAPHS AND CONCLUSIONS

Until now, image phylogeny has been approached as tree-building
given an asymmetric dissimilarity matrix. The asymmetry in the
values while matching I

i

to I

j

and I

j

to I

i

is based on the transfor-
mations performed on the source image to match the target image.
Assuming the transformations are not symmetric, the pixel-wise dis-
similarity values of the two images are different. However, under
real-world conditions, more complex (and not necessarily asymmet-
ric) transformations might be present, especially when considering
multiple donors to a composite. For such cases, the established con-
cept of finding directions fails.

In this vein, this paper provides a generalized extension to the
existing solution for multimedia phylogeny [1] and more specifically
to the MPP problem [4]. We introduce methods to construct undi-
rected phylogeny graphs for multi-composite cases with unknown
number of donors. The method generalizes well over images in non-
JPEG formats (another constraint present in prior work [4]) by not
utilizing the loss information from image compression. Moreover,
the paper also introduced the usage of new metrics of evaluation for
phylogeny, which are adequate for undirected graphs. The proposed
methods are reasonably robust to the presence of distractors landing
themselves as promising preliminary solutions for phylogeny graph
construction in the wild. Future work will be devoted to further re-
fine the edge connections and infer the kinship directionality.
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