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Abstract—Real-world tasks in computer vision often touch
upon open set recognition: multi-class recognition with incom-
plete knowledge of the world and many unknown inputs. Recent
work on this problem has proposed a model incorporating an
open space risk term to account for the space beyond the reason-
able support of known classes. This article extends the general
idea of open space risk limiting classification to accommodate
non-linear classifiers in a multi-class setting. We introduce a new
open set recognition model called Compact Abating Probability
(CAP), where the probability of class membership decreases in
value (abates) as points move from known data toward open
space. We show that CAP models improve open set recognition
for multiple algorithms. Leveraging the CAP formulation, we
go on to describe the novel Weibull-calibrated SVM (W-SVM)
algorithm, which combines the useful properties of statistical
extreme value theory for score calibration with one-class and
binary support vector machines. Our experiments show that
the W-SVM is significantly better for open set object detection
and OCR problems when compared to the state-of-the-art for
the same tasks.

Index Terms—Machine Learning, Support Vector Machines,
Open Set Recognition, Statistical Extreme Value Theory.

I. INTRODUCTION

In a recent article in this journal [27], we raised the issue of
open set recognition for visual learning, where not all classes
encountered during testing are known during training. This
is a necessary and difficult problem to tackle. As an initial
solution, we proposed an algorithm called the 1-vs-Set machine,
which is suitable for single-class detection tasks in an open set
scenario. In essence, the 1-vs-Set machine manages the risk
of the unknown by solving a two-plane optimization problem
that yields a linear classifier. Detection is a useful operation
(almost every digital camera has an automatic face detector
these days), but in many cases, we would like to recognize
which known classes, if any, are associated with the input
image. This can enable applications such as unconstrained
optical character recognition (OCR), and photo or video tagging
without constraints on the input. In this article we consider the
multi-class open set recognition problem.

Multi-class open set recognition is a fundamental problem
in computer vision. Intuitively, we classify objects with respect
to a fixed set of known classes, but we recognize something
we know among the set of all possible inputs that can include
things for which we do not explicitly have class or training
data. For example, when you look at a face in a photo, you
might have a set of people you know and want to recognize in
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Goal: Multi-class open set recognition
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Fig. 1. Open set recognition must address both the known and unknown
classes that might occur in the real world. For instance, considering OCR
for a parcel delivery application, classifiers must recognize known characters
(e.g. “3”) and reject an unspecifiable variety of other input including symbols,
marks, stickers, and photos that can appear on a package. Standard statistical
learning, using any mixture of discriminative and generative models, does not
address unknown classes. The goal of this work is to approach the problem
of multi-class open set recognition by limiting open space risk using labeled
training sets of finite measure. The Compact Abating Probability (CAP) model
we introduce bounds probability estimates of feature space that decay away
from the training data. By truncating the abating probability, CAP models
provably reduce open space risk. In addition, probability estimates from a
calibrated binary kernel machine can have even better estimates than the CAP
bounds, further reducing the open set risk. By taking advantage of the CAP
model and the statistical extreme value theory for probability estimation, the
novel W-SVM provides solutions for non-linear multi-class classification in
an open set scenario. In the multi-step example above, classes marked in red
indicate rejection, and those marked in green indicate acceptance.

mind, but there are far more people who you don’t know that
may show up in the image. You must also ignore the presence
of things that are not people: dogs, cars, buildings, trees, etc.
Knowing that we do not recognize something is what sets
multi-class recognition apart from multi-class classification.

Adapting Donald Rumsfeld’s famous “There are known
knowns” statement [23], we assert that recognition must
consider three basic categories of classes:

1) known classes, i.e. the classes with distinctly labeled
positive training examples (also serving as negative
examples for other known classes);

2) known unknown classes, i.e. labeled negative examples,
not necessarily grouped into meaningful categories;

3) unknown unknown classes, i.e. classes unseen in training.

Traditional classification, which is the dominant model used for
multi-class computer vision problems, considers only known
classes. Including known unknown classes results in models
with an explicit “other class,” or a detector trained with
unclassified negatives. Algorithms designed specifically to
address unknown unknown classes are the focus of open set
recognition — the subject of this article.

Our formal definition of open set recognition [27] introduced
the concept of open space risk, and then combined it, via
regularization, with empirical risk to formulate an open set
risk minimization problem. Open space risk is the relative
measure of positively labeled space, far from known samples
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over the overall measure of the space. However, we left the
space “far from known samples” open to interpretation. Further,
the 1-vs-Set machine is strictly a linear classifier. It reduces the
open space risk by replacing the half-space of a binary linear
classifier with a positive region bounded by two parallel planes.
While the measure of the resulting positive region is smaller
than a half-space, it still has infinite measure, and only reduces
the risk because the definition of open space risk considers
relative measure. This article seeks to incorporate non-linear
kernels into a solution that further limits open space risk by
positively labeling only sets with finite measure.

Following the usual tenets of support vector machines [29],
the 1-vs-Set machine simply assigns class labels to instances
during testing. What we would like for a multi-class solution
is a formulation that produces probabilistic decision scores.
This allows us to assess the output of multiple classifiers to
either accept the highest confidence label if the associated
probability exceeds a threshold, or to reject as unknown if
not. The formulation should be probabilistic because there is
always some amount of uncertainty in any decision. For open
set recognition in particular, there is a great deal of uncertainty
when confronting the unknown. However, the derivation of a
probabilistic learning formulation in an open set scenario is
not as straightforward as it initially appears.

Assume the set of potential classes, known and unknown,
are mutually exclusive, countable and hence can be labeled
y € N. Let z € X C R? be a measured image from the set of
all features X, where « € K means it is from the feature space
of known classes I C X. While the overall joint probability
P(z,y) is well defined for open set recognition, the set of all y
is not (nor can be) known to the algorithm, thus the estimation
of a generative model for P(x,y) is not possible. A restricted
generative model for P(x,y) could be estimated for a known
class y, x € IC, but its use would be limited in a general setting.
With unknown unknowns, many of the standard probabilistic
and statistical learning tools cannot be directly applied.

Relating the joint distribution to the conditional distribution
requires conditioning on the classes, and with unknown classes,
one cannot properly normalize. Even with the assumption that
all classes are mutually exclusive, the unknown unknowns
prohibit the use of the law of total probability that underlies
Bayes’ theorem. Furthermore, open set recognition cannot just
use the maximum a posteriori probability (MAP) estimate over
the known classes as the optimal solution. MAP estimation
needs the full posterior distribution, which again requires
consideration of all classes. The consideration of just the known
classes is insufficient.

To address these issues, we introduce a new formal model
of probabilistic class association for open set recognition
called Compact Abating Probability (CAP). In a CAP model,
probability of class membership abates as points move from
known data to open space, which accounts for the unknown
unknowns without the need to explicitly model them. We
also introduce a novel technique called the Weibull-calibrated
SVM (W-SVM), which combines CAP with the statistical
extreme value theory (EVT) for improved multi-class open
set recognition. EVT statistics have been shown to yield well-
grounded probability estimates for SVM applied to closed set

recognition problems in computer vision [24], thus we revisit
this approach in the context of open set recognition in this work.
Fig. 1 provides a brief overview of the model and algorithm.

Our experiments show that incorporating CAP improves
existing techniques and that the W-SVM is significantly
better than existing approaches including: common binary
and multi-class SVM formulations, multi-class SVM with
a rejection option provided by thresholding Platt’s sigmoid
probability estimator [22], Multi-Attribute Spaces [24], the 1-vs-
Set Machine [27], Logistic Regression, and Nearest Neighbor.
For evaluation, we breathe new life into the classic data sets
for multi-class classification, LETTER [12] and MNIST [21],
by changing their testing protocols. Surprisingly, when recon-
textualized into open set problems, these once-solved data sets
become significant challenges for recent algorithms. We also
examine a difficult cross-data set object detection task with
data from Caltech 256 [13] and ImageNet [7].

In summary, the contributions of this article are:

1) The theoretical formulation of a Compact Abating
Probability (CAP) model for open set recognition.

2) A new algorithm called Weibull-calibrated SVM (W-
SVM), which incorporates the CAP model and the
statistical extreme value theory for probability estimates.

3) An experimental evaluation of CAP and the W-SVM in
detection and multi-class open set scenarios.

II. BACKGROUND AND RELATED WORK

Consider the definition of open space risk that we introduced
in [27], which the objective function of open set recognition,
including multi-class formulations, must minimize. Let f
be a measurable recognition function where f,(z) > 0 for
recognition of the class y of interest and f,(z) = 0 when y
is not recognized, O be the “open space,” and S, be a ball
of radius 7, that includes all of the known positive training
examples © € IC as well as the open space O. The probabilistic
Open Space Risk Ro(f) for a class y can be defined as

_ fo fy(a:)da:
fso fy(x)dm

where open space risk is considered to be the relative measure
of positively labeled open space compared to the overall
measure of positively labeled space (which includes the space
near the positive examples). This definition, however, does not
tell us how to define O. In this article, we specifically look at
a definition of O for kernels, including non-linear functions.
How to incorporate Eq. 1 into a model is an important
question. There is an ongoing debate between the use of
generative and discriminative models in statistical learning [2],
[20], with arguments for the value of each. However, open set
recognition introduces a new issue: neither discriminative nor
generative models address the unknown unknowns that exist
in open space; another constraint must be added. Moreover,
strategies to learn discriminative class boundaries like hard
negative mining [10], [14] are limited in open set recognition,
since it is not possible to mine examples from the unknown
classes. In response to these observations, we incorporate an
abating process, a model enforced decay of probability away

Ro(f) )
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from supporting evidence, into the CAP model we introduce
in Sec. III. With missing classes preventing the use of MAP
or a classical optimal Bayes estimator over known classes,
we acknowledge that we must have what Lasserre et al. [20]
would consider model mis-specification and hence expect a
benefit from discriminative training.

The W-SVM, described in detail in Sec. IV, relies on a
calibration process to transform raw scores to probabilities.
Thresholding these probabilities provides a viable open set
recognition algorithm. The idea of using thresholded probabili-
ties for rejection is, unsurprisingly, not new [31], [1]. Chow [5]
showed that the optimal rejection decision rule is a threshold
over the a postiori probabilities. The raw SVM decision scores
are uncalibrated values and not posterior probabilities, and thus
rejection processes tend to calibrate/normalize them. Several
different techniques [22], [8], [18], [3] have been proposed for
converting uncalibrated SVM output to probabilistic calibrated
output. For multi-class problems, the estimation is more
complex because the calibrations across classes need to be
related, highlighting the fact that the per-class models are
insufficient. Multiple heuristic techniques have been developed
[8], [18] for converting multi-class SVM output to an estimated
posterior probability.

A variation on Platt’s approach [22], included in LIB-
SVM [4], [18], is the most widely used probability estimator
for a single SVM. Platt’s technique fits a sigmoid function to
uncalibrated SVM decision scores during training, and then
computes calibrated values for novel instances using that model.
While the data will generally be “roughly sigmoidal,” there is
no theoretical basis for the pure sigmoid: motivation for this
model comes from specific empirical data instances [22]. In
Sec. V we look at the performance of this estimator.

We consider an estimate to be well-grounded if there is a de-
fensible theoretical justification for the choice of the underlying
probability model, e.g. the central limit theorem justifies the
use of a Gaussian distribution for some physical measurements.
There is, however, no solid theoretical justification for SVM
calibration using a Gaussian model computed over all of the
data. As an alternative, we invoke the statistical extreme value
theory [19] to develop grounded probability estimates.

The use of statistical extreme value theory in computer vision
has been growing. Related work includes the use of EVT for
“meta-recognition” introduced by Scheirer et al. in [26], [25],
and expanded upon by Fragoso and Turk in [!1]. However,
none of these references considers open set recognition, nor do
they suggest EVT for producing SVM probability estimates.
The most related work is the Weibull-based normalization
of SVM scores from visual attribute classifiers by Scheirer et
al. [24], which considers data from the “other side” of the class
of interest to estimate rejection probability, i.e. considering
anything not in the negative class to be positive. We also
compare with this model, which is rather weak for open set
recognition. Rejecting association with known negatives is not
as meaningful when there are unknown classes.

III. THE COMPACT ABATING PROBABILITY MODEL

This section defines our Compact Abating Probability (CAP)
model for open set recognition. Intuitively, open space risk

exists when a recognition model labels space far from any
training data, e.g. if we are labeling location data using training
data only from Colorado, it would be risky to apply that model
to Boston. The idea of a CAP model is to ensure that the
recognition function is decreasing away from the training data,
so that thresholding it limits the labeled region.

The definition of open space risk, Eq. 1, requires a definition
of open space O. Open space is the space sufficiently far from
any known positive training sample z; € K,i = 1... N. Thus,
we offer a formal definition:

0 =58,— | Brla)

i€EN

2

where B, (x;) is a closed ball of radius r centered around
training sample x;, and we consider all NV training samples.
This defines open space as the space more than distance r
from any known training sample. Ideally, all samples from
class y will be outside O. For a minimal radius r*, any smaller
radius 7 would include positive test samples of y: ' < r* =
Jdz’ € O | fy(«") > 0. Note that labeling the space within the
balls as just positive may yield a poor recognition function; the
balls likely contain a complex mixture of positive and negative
regions. We consider r to be a problem-specific parameter,
which may be estimated via calibration, e.g. the maximum (or
average) spacing between training samples.

We first describe the properties of an Abating Bound, and
then expand that bound to a probabilistic formulation. An
abating bound A(r) : R — R is a non-negative finite
square integrable continuous decreasing function. This implies
lim, o0 A(r) = 0. When Vz,32* | f(z) < A(||lx — z*|),
we call the function f “abating” because the spatial influence
decreases with distance from x*.

Next, let us assume features are transformed by the kernel
trick into an inner product space with positive definite kernel
K(z,x;) = (®(x), P(x;)), where x; € K indicates a specific
positive training example, and x € X any example. The kernel
K defines a similarity measure over the feature space. We call
kernel K abating if there exists an abating bound A such that

0 < K(z,z;) < A(||lz — i) )

Standard RBF (Gaussian) kernels are decaying functions of
radial distance and hence abating kernels.

To get probabilities, we process the kernels with a calibration
technique, using training data to define a monotonically
decreasing probability distribution p¢(s;y) for the probability
of the score s from an RBF kernel K being associated with
the given class y. We call py(s;y) an Abating Probabilistic
Point Model because the probability of points associating abates
(becomes less intense) as the spatial separation of any two
points increases.

For recognition we need to combine multiple data points
to build an effective class model. Consider fusing the abating
models from the known training data xy ...z, x; € K, ie.
for any example z € X we define the model

M(z) = py(F(K(z,21) ... K(2,2m));y) )

where F' is the fusion operator. We typically consider F' to
be either the canonical sum or canonical product rule, though

YV, x;
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other fusion processes can be used. A Fused Abating Property
is defined as any fusion function where 3z’ € X such that an
abating bound function A, exists Vz € X:

F(K(z,z1)...K(z,2)) < Ax(||2" — 2|)) (5)

Eq. 5 states that after fusion there is an abating bound function
centered at z’ such that the fused value F is bounded from
above by that abating function. According to Prop. 4.4 of [15],
positive definite kernels are closed under canonical sums or
products, so the result of fusion is still a proper kernel. Thus
if K(-,-) satisfies Eq. 3, then the canonical sum or product
rules for fusion will satisfy Eq. 5.

Just using an abating probabilistic point model does not,
however, assure that open set recognition is being addressed
because the model can have non-zero probability over all of
R™ and yield a large risk when integrated over the open space.
One way to to handle this is to define M, to be a Compact
Abating Probability Model with distance threshold 7 and an
abating probabilistic point model M satisfying the fused abating
property such that for a given finite 7 and Vz € X

min ||z — ;|| >7 = M;(x)=0 (6)
x, EC

In a compact abating probability model, features beyond a given
thresholded distance 7 from the closest training point have
zero probability. This is true even of very high dimensional
sparse representations that are common in object recognition.
The model controls for the possibility of representations that
are close in feature space yet relatively far in label space via
7. With these preliminaries, we can state our primary theorem:

Theorem 1 (Open Space Risk of CAP models): Ler M, ,(x)
be a probabilistic recognition function that uses a CAP model
over a known training set for class y, where Jx; € K |
M y(x;) > 0. Let open space risk be Ro(f) and open space
be O, defined as in Egs. 1 and 2 respectively. If r in Eq. 2
satisfies v > T, then Ro(M,,) = 0, i.e. when the CAP
distance threshold is smaller than the open space radius, the
CAP model has zero open space risk.

Proof: Let  be any point in O. Since z € O implies
r & Ujen Br(zi), we have Va; € K, ||z — 24| > r > 7.
Therefore, by the compact abating property (Eq. 6) M ,(z) =
0. Placing this into the numerator of Ro(f) (Eq. 1) yields
Joo M-y (x)dz = 0 and zero open space risk. [

Corollary 1 (Thresholding CAP model probability man-
ages Open Space Risk): For any CAP model, considering
only points with sufficiently high probability will reduce open
space risk. In particular, consider a canonical sum kernel-
based CAP model with a probability threshold 0 < §, < 1
such that for the set of points x; € IKC and coefficients ¥9; > 0,
pr(>; ViK(x,2;);y) > 6r. Increasing 0, decreases open
space risk, and there exists a 6% such that any greater threshold
produces zero open space risk.

Thresholding probabilities provides a way to adjust the
support of the CAP model because in the compact abating
probability model M the probabilities are bounded by the
decreasing abating bound (Eqgs. 4 and 5), therefore considering

only points above a given probability threshold implicitly
defines a 7. Since we can adjust the CAP model’s open space
risk by thresholding the probabilities, it provides a powerful
way to address open set recognition. While any model with
sufficiently compact support could have zero open space risk,
the abating property of the CAP model allows one to implicitly
adjust 7 to reduce the amount of open space that can be labeled
positive. Note that the CAP property does not guarantee that
the model assigns positive labels within the compact support
region — it just ensures it that there is a zero probability of
doing so outside the region. In general the quality of the CAP
model will still depend on how well the probabilities model
the actual underlying positive region of the class.

A simple CAP example, Nearest Neighbor + CAP
(NN+CAP), is to let d, be the distance to the nearest neighbor
of z, and to let d, > 7 = py(z) = 0 and p,(x) = @
otherwise. In a multi-class setting, this results in a thresholded
nearest neighbor algorithm that can reject an input as unknown.
Other vision algorithms have considered nearest neighbors
within a distance threshold, e.g. [30]. With sufficently dense
samples, NN+CAP reduces to nearest neighbor with all of its
associated properties, i.e. having a limiting error of no more
than twice the Bayes error rate. While NN+CAP provides
more meaningful responses for open set recognition with finite
samplings than nearest neighbor, it is still a weak probability
model and hence not expected to perform very well on difficult
problems (see Sec. V). Thus we seek alternative models. Our
first step for non-linear kernels considers a one-class SVM-
based model [28]:

Theorem 2 (RBF One-Class SVM yields CAP model): Let
x; € K,i = 1...m be the training data for class y. Let O-SVM
be a one-class SVM with a square integrable monotonically
decreasing RBF kernel K defined over the training data,
with associated Lagrangian multipliers «; > 0 [28], then
> iy K (2, x;) yields a CAP model.

Proof: Since O-SVM has only positive data', we can view
this function as providing a canonical sum over positive definite
kernels F(z) = >, V(K (z,z;)), with coefficients ¥; > 0
and training points x;. To show this is a CAP model, let
g =,V =, 0;y;. Let i* = argmin, ||z’ — x|, then it
is sufficient to let A,» = gK (x, x;+), which by the theorem’s
kernel assumption is monotonically decreasing and in the space
of square integrable functions. Hence gK (x, x;+) is an abating
bound function for the sum, yielding a CAP model. [

IV. PROBABILITY ESTIMATION AND THE W-SVM

While the one-class model of Sec. III is intuitive, what
about a binary SVM in this probabilistic mode? It is well
known that one-class models are typically less effective than
binary machines [27]. Unfortunately, the decision score of a
binary SVM is not a canonical sum. It can, however, still be
useful as improved probabilities will generally result in tighter
bounds around the class of interest. Following [15], one can
collect all the positive coefficients into one sum, and all of

I'The decision function of the one-class SVM has a bias term p that we ignore
as it only shifts scores and hence is removed by probability normalization.
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the negatives into a second sum, split the bias between them,
and view the SVM as applying a decision rule on which is
more similar. This effectively fuses both positive and negative
evidence. Working with only the positive or negative data, we
can get nicely bounded results from a binary SVM that can be
used in conjunction with the one-class probabilities. We call
this model the Weibull-calibrated SVM (W-SVM).

A. Binary RBF SVM Incorporating a CAP Model

Discriminative trained classifiers such as binary SVMs
can have very good closed set performance. However, a
discriminative classifier estimating P(y|x), trained on z € K,
should be viewed as P(y|z € K), and has no basis for
prediction when = ¢ K. Thus to improve the accuracy, we seek
to combine probabilities computed for both one-class RBF
SVMs and binary RBF SVMs. We use the one-class SVM
CAP model as a conditioner: if the one-class SVM predicts
Po(y|x) > d,, even with a very low threshold ¢, that a given
input z is a member of class y, then we will consider the
binary classifier’s estimates of P(y|z).

To estimate the binary classifier’s probability, we start from
the observation that separating positives and negatives is useful.
Rather than computing the RBF SVM decision score and
optimizing a sigmoid over all the scores, we seek to model the
positive and negative scores separately. Assume a set of known
classes ). Logically, for a class y € ), we can use positive
scores from y to estimate PT(y|x). We can also use negative
scores from other known classes to estimate P~ (Y \ y|z).
In a closed set scenario, we could estimate PV (y|z) = 1 —
P~ (Y \yl|x), ie. given input z € K the probability of being a
particular class label can be estimated as the probability of not
being a negative example. In an open set scenario, we cannot,
in general, make these estimations. Thus to minimize our open
space risk, we only consider P~ and P+ when Pp(y|z) >,
i.e. when open space risk is small.

B. Grounded Probability Estimation

The second issue for the W-SVM is the need for grounded
probability estimation. Recent work [25], [24] has shown
that the recognition problem itself is consistent with the
assumptions of statistical extreme value theory (EVT) [19],
which provides a way to determine probabilities, regardless of
the overall distribution of the data. The extreme values of a
score distribution produced by any recognition algorithm can
always be modeled by an EVT distribution, which is a reverse
Weibull if the data are bounded from above, and a Weibull
if bounded from below. With respect to statistical modeling,
the prior EVT approaches [25], [24] only fit on the “negative”
side of the decision space and use a statistical hypothesis test
for rejection, i.e. they indicate the probability of a positive by
estimating the probability of “not being a negative.”

We apply the EVT concept separately to the positive and
the negative scores from the binary SVM. A reverse Weibull
is justified for the largest scores from the negative examples
because they are bounded from above. A Weibull is the expected
distribution for the smallest scores from the positive examples
because they are bounded from below. Based on this knowledge,

we can formulate the calibration for the binary SVM component
of the W-SVM. Let us separate our training examples into the
match examples for a class y as * € K and all other non-
match examples where the class # y as x € K~. Note that
K = Kt UK~. Letting s; = f(z;) be the SVM decision
score for x;, we collect the scores into match and non-match
sets where scores for matches are s; € ST if 2; € KT and
scores for non-matches are s; € S~ if x; € K. Let ¢ be the
upper extremes of the non-matches S—, and let 7 be the lower
extremes of the matches ST.

Returning to modeling, the reverse Weibull and Weibull have
three parameters: location v, scale A, and shape k. We use the
library provided by the authors of [24], applying Maximum
Likelihood Estimation to estimate the v, Ay, ,, that best fit
1 and the vy, Ay, Ky that best fit ¢b. To produce a probability
score for a particular SVM decision f(z), we use the CDF
defined by the parameters. Given a test sample x, we have two
independent estimates for P(y|f(z)): P, based on the Weibull
CDF derived from the match data:

Byylf(z)) =1—e (7

and P, based on the reverse Weibull CDF derived from the
non-match data, which is equivalent to rejecting the Weibull
fitting on the non-match data:

(ot @)=y ey,
(G

fl@)—vy

Pyl f(z) =e 0 @®)

P, is a novel direct probability estimation using only match
data, while P, is similar to the normalization suggested by
[24]. Our experiments in Sec. V show that, especially for open
set testing, the use of P, is significantly better. This is intuitive
since P, using only positive data, does not strongly depend on
which classes are known. While P, is not formally related to
any one-class estimation, its use of only positive data means it
shares some of the characteristics of one-class SVMs, including
CAP-like rejection of non-relevant classes. However, since the
underlying classifier is a one-vs-all binary SVM, the resulting
estimates are more discriminative. While the above description
has been in the context of a binary SVM, Eq. 7 also serves as
the calibration for the one-class SVM CAP model.

C. The W-SVM Algorithm

Finally, we must say how to use these estimates. Since both
estimators use independent points, the product P, x P, can
be interpreted as “the probability that the input is from the
positive class AND NOT from any of the known negative
classes.” Conversely, the sum P, + P, would be interpreted as
either a positive OR NOT a known negative, with the latter often
being true for any unknown unknowns. In open set recognition,
where there may be unknown classes, Py should generally be
modulated by other supporting evidence of the sample being
positive. Thus the product is the preferred combination.

We note the estimates are not completely conditionally
independent since they share the underlying SVM structure,
which is valid only when the input is from a known class.
As described above, to further manage open set risk, we
condition the use of the W-SVM with a thresholded CAP
model. Letting Po(y|z) be the probability from Eq. 7 for the
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RBF one-class SVM trained on positive examples of class
y, we define an indicator variable: ¢, = 1 if Po(y|z) > 9§,
and ¢, = 0 otherwise. Multi-class W-SVM recognition for all
known classes Y is then:
y* =argmax P, () X Py ,(x) X ¢y
yey
subject to P, 4« () X Py y+(x) > dr.

(€))

Notice that the W-SVM has two parameters: 0, which is
generally very small (fixed to 0.001 for all experiments in this
article) and is used to adjust what data the one-class SVM
considers to be even remotely related, and 6, which is the
level of confidence needed in the W-SVM estimate itself 2.
To help readers see how this differs from Platt calibration,
consider data from our object detection experiment below with
widely separated training classes that have all match scores
in the range [0.99,1] and all non-match scores in the range
[—1.0, —0.99]. Platt’s sigmoid will yield Ps(0) ~ 0.5. For W-
SVM, P, (0) ~ 0.001 and P, (0) ~ 0.999 yielding a product of
~ 0.001. This is because the score of 0 is unlike anything seen
in training; the sample producing it can be viewed as almost
being in open space. W-SVM probabilities are qualitatively and
quantitatively very different from prior calibration techniques.

V. EXPERIMENTAL EVALUATION

Our evaluation® of the W-SVM is focused on two challenging
open set recognition scenarios. Like our previous work [27],
we first examine binary object detection as a representative
open set task in computer vision. Extending our experiments,
we then look at the more difficult problem of multi-class
open set recognition. The key question we seek to answer
is how the W-SVM compares to the prior work in open set
recognition, SVM probability estimation, binary and multi-class
SVM formulations, and other common multi-class classifiers.

Preliminaries. Our comparison approaches include:

1) 1-vs-Set Machine [27]; a linear classifier for open set
detection problems. Generalizes or specializes two planes
to optimize empirical and open space risk (Eq. 1).

2) 1-vs-All Binary SVM; one positive class and all known
negative classes are sampled for training a detector with
a linear or RBF kernel. LIBSVM implementation [4].

3) 1-vs-All Binary RBF SVM with Platt Probability Esti-
mation [22]; above detector training with empirical fit of
training data to sigmoid, producing probabilistic decision
scores. Rejection option is available by thresholding
probability scores. LIBSVM implementation [4].

4) 1-vs-All Multi-class RBF SVM; all combinations of one
positive class and all known negative classes. LIBSVM
ErrorCode implementation [17].

5) 1-vs-all Multi-class RBF SVM with Platt Probability Esti-
mation [22]; above SVM training with sigmoid fitting and
rejection option. LIBSVM ErrorCode implementation.

6) Pairwise Multi-class RBF SVM [16]; a one-against-one
multi-class formulation incorporating all known classes.
LIBSVM implementation.

2Full pseudocode for the W-SVM and a visual walkthrough of the algorithm
are provided as supplemental material.
3W-SVM code and all experimental data will be released after publication.
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1-vs-All Bin. RBF

“+W-SVM *<“MAS
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Fig. 2. Performance on an open set binary object detection task for an open
universe of 88 classes [27]. Results are calculated over a five-fold cross-data
set style test with images from Caltech 256 used for training and images from
Caltech 256 and ImageNet for testing; error bars reflect standard deviation. The
W-SVM significantly outperforms the prior state-of-the-art (1-vs-Set Machine),
with a 20%—-26% improvement in F-measure.

7) Pairwise Multi-class RBF SVM with Platt Probability
Estimation; above SVM training with sigmoid fitting and
a rejection option. LIBSVM implementation.

8) Multi-Attribute Spaces (MAS) [24]; binary RBF SVM
calibration through EVT modeling of the decision scores
from the non-match data (Eq. 8). We add a threshold
over the probabilities for a rejection option.

9) Multi-Attribute Spaces + CAP Model (MAS+CAP); a

novel extension to the MAS approach that provides a

CAP model via one-class SVM to condition the decisions.

Nearest Neighbor (NN); simple non-parametric multi-

class classification. Our own implementation.

Nearest Neighbor + CAP Model (NN+CAP); the algo-

rithm described in Sec. III. 7 is set via five-fold cross-

validation on the training data.

Logistic Regression; regression analysis for multi-class

probabilistic linear classification. LIBLINEAR implemen-

tation [9].

10)

1)

12)

Following [27], we plot “openness” vs. F-measure, where
we adapt standard data sets for open set cross-validation style
analysis, holding out some classes in training and mixing them
back in during testing. The definition we introduced in [27]
quantifies “openness” as a function of the number of classes
known in training and the number of classes observed during
testing. Let Cr be the number of classes to be recognized,
Cr be the number of classes used in training, and Cp be the
number of classes used in evaluation (testing), then

openness =1 — /(2 x Cr/(Cr + Cg)).

This provides a convenient way of assessing openness that
varies from 0% and 100%. We chose F-measure instead of
accuracy because it better emphasizes the distinction between
correct positive and negative classifications*. For comparison,
accuracy plots for all multi-class recognition experiments in
this section are provided in this article’s supplemental material.

(10)

“4For an exposition of why, see Sec. 5 of [27]
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Fig. 3. F-measure for multi-class open set recognition on OLETTER. As
openness increases, the W-SVM has the best performance. Common multi-
class SVMs, probabilistic multi-class SVMs with a rejection option, logistic
regression, and nearest neighbor degrade quickly (1-vs-All Mult. RBF, Pairwise
Mult. RBF, and MAS are all comparable and visually overlap). The MAS and
NN algorithms with a CAP model do a bit better than their baselines, but still
degrade much more than the W-SVM. Error bars reflect standard deviation.

An openness statistic also helps us set the level of confi-
dence needed for the W-SVM to make a positive decision.
Recognizing that the more open the problem the higher the
confidence we require to reject unknown unknowns, one can
use expected openness (based on prior observations of similar
problems outside of the testing regime at hand) to set this
threshold as

dr = 0.5 X openness

(1)

Eq. 11 sets the threshold at O for closed problems; thresholds
approach 0.5 (i.e. random chance) as the problem becomes
more open. For a fair comparison, we also set the rejection
threshold over the probability scores for all SVM algorithms
with a rejection option and any other algorithm with a CAP
model according to this formula.

For the open set binary detection experiment, we use a
subset of Caltech 256 for training and images from Caltech
256 and ImageNet for testing. 532,400 images are considered
in total. The setup is a replication of the open universe of 88
classes experiment described in [27] (Fig. 7 of that article),
with five-fold cross-validation style testing. The 88 classes are
selected at random, where one class is chosen to be positive,
n classes are chosen as negative training data (where n varies
with openness), and 87 known and unknown classes are used
as negatives for testing. Each class is treated positively once
per fold. Features are a 3,780-dimension vector of Histogram
of Oriented Gradients (HOG) [6]. Following [27], all SVM
parameters are set to the defaults specified by LIBSVM [4].

The second experiment examines a true open set multi-class
recognition problem based on extensions of the standard visual
learning benchmarks LETTER [12] and MNIST [21], which
are commonly used to evaluate multi-class classification. To
recast LETTER as an open set problem that we call OLETTER,
we randomly choose 15 distinct labels as the known classes,
and vary openness by adding a subset of the remaining 11

0.7
0% 2% 4% 6% 8% 10% 12%
Openness
=*=W-SVM “® W-SVM 6, =.1 A-MAS+CAP
“¥% MAS 0 NN+CAP O°NN

1-vs-All Mult. RBF Platt
Pairwise Mult. RBF

Pairwise Mult. RBF Platt
O Logistic Regression

1-vs-All-Mult. RBF

Fig. 4. F-measure for multi-class open set recognition on OMNIST. W-SVM
again maintains high F-measure scores as the problem grows to be more
open, but common multi-class SVMs and existing thresholded probability
estimators degrade quickly. NN+CAP and MAS+CAP are again better than
their baselines. All algorithms except the W-SVM, NN+CAP, MAS+CAP, and
Logistic Regression are comparable and visually overlap. Error bars reflect
standard deviation.

labels, repeating over 20-folds to get error bars. For open set
testing on MNIST, we define OMNIST to use 6 labels as
the known classes, and vary openness with the other 4 labels,
again with 20 folds. We emphasize that while LETTER and
MNIST are essentially solved problems in the literature, they
are substantially more difficult in this open set configuration.
For multi-class recognition the class with the maximum
(as a function of algorithm) score, probability, or votes is
the predicted class. In multi-class algorithms with a rejection
option, we consider rejected samples as either true “negatives”
if an unknown class, or false negatives if a known class. SVMs
without a reject option can produce no negative decisions, and
thus have very poor precision as problems grow to be more
open. In multi-class open set recognition, precision is critical
for a high F-measure statistic. RBF parameters were tuned via
cross validation on the training data, yielding (C' = 2, v = 2)
for OLETTER and (C = 2, v = 0.03125) for OMNIST. For the
W-SVM, we also added an additional comparison case where
instead of using Eq. 11 to set dg, it is fixed to 0.1. We chose
this constant to help illustrate the role of dr and the sensitivity
of performance to the threshold. For problems that are more
closed, a large rejection threshold degrades performance.
Results. The results of the detection experiment are sum-
marized in Fig. 2. The W-SVM is significantly better than the
prior state-of-the-art detection approach (1-vs-Set Machine) for
open set scenarios. With respect to other approaches, rejection
by thresholding sigmoid-based Platt probabilities is worse than
standard SVM decision scores. A likely explanation for this
is that the training classes are well separated, making the
calibration model weak for unknown classes falling in between.
Similarly, the performance of the MAS algorithm, which was
designed for closed set classification, is also worse than binary
SVM. This demonstrates a positive effect for adding a Weibull
model of the match data (Eq. 7) to compliment the non-match
model for increased generalization in the W-SVM. Another
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important question is whether the CAP model provides any
discernible benefit for open set recognition. The MAS+CAP
curve shows adding a CAP model offers a large improvement
in F-measure over the base MAS algorithm.

Figs. 3 and 4 highlight open set multi-class recognition F-
measure performance for OLETTER and OMNIST respectively.
On these tests F-measure degrades very rapidly for the most
common multi-class SVM algorithms because they do not have
a rejection option to handle the growing number of negatives.
On OLETTER we see that the one-vs-all SVM with Platt
probability estimation, which has a rejection option, is better
than the standard algorithms — but the W-SVM is much better at
tolerating increasing openness. On OMNIST, which has a larger
number of testing images, the advantage of one-vs-all SVM
with Platt probability estimation over typical SVMs disappears,
but W-SVM retains most of its performance. Comparing the
W-SVM using Eq. 11 and the W-SVM with the fixed dg, Eq. 11
is the better strategy, producing higher F-measure statistics at
lower levels of openness — especially for OMNIST. Again we
see improvement for the MAS+CAP algorithm over its baseline
(+3.3%), and a similar effect is observed for NN+CAP (+3.3%),
but both are weaker than the W-SVM.

VI. DISCUSSION

As one considers open set recognition, the assumptions of
traditional statistical learning, Bayesian models, and generative
and discriminative models often do not hold. However, they can
be adapted to provide probabilities for thresholding decisions
that pave a way forward — where decisions depend on the
validity and shape of those probabilities. While this article
has focused on SVMs, and our experiments show the strong
impact of openness on SVMs, the improvements from using
a CAP model applied to SVM and other techniques leads us
to conjecture that addressing open set recognition requires
thresholding on estimates that are robust to unknown classes
and decay away from training data.

We used the statistical extreme value theory to develop a
novel approach to probability estimation for SVMs. Leveraging
prior work in EVT, we made use of the observation that the
distribution of scores near the SVM boundary of the extreme
values of both matching and non-matching class data follow
EVT. However, this observation comes with a caveat: with
very limited sampling in training for a class with large variation
in its feature space, it may not always be possible to fit a good
Weibull model to the data.

Small training sets are just one open issue. Humans have a
remarkable ability to reason through more complicated open set
scenarios where machines currently cannot. Overlapping classes
and hierarchical classes, when mixed with unknown unknowns,
are representative of these cases. Perhaps most interesting is the
significant challenge posed by the new partitions of LETTER
and MNIST for open set multi-class recognition testing. These
data sets are considered solved for closed set classification,
but become quite relevant again for open set recognition. Both
demonstrate that state-of-the-art learning approaches are far
more brittle than originally assumed.

ACKNOWLEDGMENT

This work was supported in part by ONR MURI N000O14-
08-1-0638 and NSF IIS-1320956.

REFERENCES

[1] P. L. Bartlett and M. H. Wegkamp. Classification with a reject option
using a hinge loss. JMLR, 9:1823-1840, 2008. 3

[2] G. Bouchard, B. Triggs, et al. The tradeoff between generative and
discriminative classifiers. In COMPSTAT, 2004. 2

[3] C. Bravo, J. L. Lobato, R. Weber, and G. L’Huillier. A hybrid system
for probability estimation in multiclass problems combining SVMs and
neural networks. In Int. Conf. Hybrid Intel. Sys., 2008. 3

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Tran. on Int. Sys. & Tech., 2:27:1-27:27, 2011. 3, 6, 7

[5] C. Chow. On optimum recognition error and reject tradeoff. IEEE Trans.
Info. Theory, 16(1):41-46, 1970. 3

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In IEEE CVPR, 2005. 7

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:

A large-scale hierarchical image database. In /EEE CVPR, 2009. 2

[8] K. Duan and S. Keerthi. Which is the best multiclass SVM method? An
empirical study. Multiple Classifier Systems, pp 732-760, 2005. 3

[9]1 R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.

LIBLINEAR: A library for large linear classification. JMLR, 9:1871—

1874, 2008. 6

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.

Object detection with discriminatively trained part based models. /IEEE

T-PAMI, 32(9):1627-1645, 2010. 2

V. Fragoso and M. Turk. SWIGS: A swift guided sampling method. In

IEEE CVPR, June 2013. 3

P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive

classifiers. Machine Learning, 6:161-182, 1991. 2, 7

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.

Tech. Rep. 7694, California Institute of Technology, 2007. 2

J. F. Henriques, J. Carreira, R. Caseiro, and J. Batista. Beyond

hard negative mining: Efficient detector learning via block-circulant

decomposition. In /EEE ICCV, December 2013. 2

T. Hofmann, B. Scholkopf, and A. J. Smola. Kernel methods in machine

learning. Annals of Stat., pp 1171-1220, 2008. 4

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support

vector machines. IEEE T-NN, 13(2):415-425, 2002. 6

T.-K. Huang. LIBSVM ErrorCode. http://goo.gl/cOcgDN. 6

T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized Bradley-Terry

models and multi-class probability estimates. JMLR, 7:85-115, Dec.

2006. 3

S. Kotz and S. Nadarajah. Extreme Value Distributions: Theory and

Applications. World Sci. Pub. Co., 2001. 3, 5

J. A. Lasserre, C. M. Bishop, and T. P. Minka. Principled hybrids of

generative and discriminative models. In IEEE CVPR, 2006. 2, 3

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proc. of the IEEE, 86(11):2278-2324,

1998. 2, 7

J. Platt. Probabilistic outputs for support vector machines and comparison

to regularize likelihood methods. In Advances in Large Margin Classifiers,

pp 61-74, 2000. 2, 3, 6

D. Rumsfeld. DoD News Briefing addressing unknown unknowns. http:

/Iwww.defense.gov/transcripts/transcript.aspx ?transcriptid=2636, 2002.

[Last accessed 15-Mar-2014]. 1

W. Scheirer, N. Kumar, P. N. Belhumeur, and T. E. Boult. Multi-attribute

spaces: Calibration for attribute fusion and similarity search. In IEEE

CVPR, June 2012. 2, 3,5, 6

W. Scheirer, A. Rocha, R. Michaels, and T. E. Boult. Meta-recognition:

The theory and practice of recognition score analysis. IEEE T-PAMI,

33(8):1689-1695, Aug. 2011. 3, 5

W. Scheirer, A. Rocha, R. Micheals, and T. Boult. Robust fusion: extreme

value theory for recognition score normalization. In ECCV. Springer,

2010. 3

W. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open set

recognition. JEEE T-PAMI, 36(7):1757-1772, July 2013. 1, 2, 4, 6, 7

B. Schoélkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.

Williamson. Estimating the support of a high-dimensional distribution.

Neural Computation, 13(7):1443-1471, July 2001. 4

V. Vapnik. The Nature of Statistical Learning Theory, 2nd Edition.

Springer, 1998. 2

Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hashing.

In ECCV 2012, 2012. 4

R. Zhang and D. Metaxas. RO-SVM: Support vector machine with reject

option for image categorization. In BMVC, 2006. 3

[7

—

(10]

(11]
[12]
[13]
[14]

[15]
(16]
[17]
(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]
[30]
(31]


http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636

