Set Recognition

Walter J. Scheirer and Terrance E. Boult

Companion Website

All material for this tutorial is available at: http://www.wjscheirer.com/misc/openset/

(Also linked to from the CVPR 2016 Website)

Part 1: An Introduction to the Open Set Recognition Problem

Benchmarks in computer vision

Assume we have examples from all classes:

Places2 Data Set (part of ILSVRC 2016)

Out in the real world...

Be on the lookout for blue Ford sedans

while rejecting the trees, signs, telephone poles...

M. Milford, W.J. Scheirer, E. Vig, A. Glover, O. Baumann, J. Mattingley, and D.D. Cox, "Condition Invariant Top-Down Visual Place Recognition," ICRA 2014.

Open Space in Classification

What is the general recognition problem?

Duin and Pekalska*: how one should approach multi-class recognition is still an open issue

- Is it a series of binary classifications?
- Is it a search performed for each possible class?
- What happens when some classes are ill-sampled, not sampled at all or undefined?

"There are known knowns..."

known classes: the classes with distinctly labeled positive training examples (also serving as negative examples for other known classes)

known unknown classes: labeled negative examples, not necessarily grouped into meaningful categories

unknown unknown classes: classes unseen in training

Definitions

Closed Set Recognition: all testing classes are known at training time

Open Set Recognition: incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing

The burden for the visual recognition community

- Results look better than they really are, which is misleads practitioners
- "Off-the-shelf" classifiers are not sufficient to solve the problem
- Open set problems are found in nearly every case where recognition algorithms are present

A surprising finding...

pixel space

ctive ating plane

Linear separation of CNN feature representations

Read-out layer

Typical CNN architecture CC BY 4.0 Aphex34

Softmax

 $minrac{1}{2}||w||^2$ $P(y = j | \mathbf{x}) = \frac{e^{\mathbf{v}_{\mathbf{j}}(\mathbf{x})}}{\sum_{i=1}^{N} e^{\mathbf{v}_{\mathbf{i}}(\mathbf{x})}}$

subject to

$$y_i(w * x_i + b) \ge 1, \forall_i$$

Linear SVM

Known positive or negative sample

Cosine Similarity

Threshold determined empirically via known pairs

Sum over all of the classes

Evolving images to match CNN classes

A. Nguyen, J. Yosinski, and J. Clune, "Deep Neural Networks are Easily Fooled," CVPR 2015.

But you don't have to use tricky manipulations

GoogleNet Output

Label: Hammerhead Shark

Label: Syringe

Label: Blow Dryer

Label: Trimaran

Label: Mosque

Label: Missile

Are performance measures misleading us?

Psychophysics on the Model

W.J. Scheirer, S. Anthony, K. Nakayama, and D. D. Cox, "Perceptual Annotation: Measuring Human Vision to Improve Computer Vision," IEEE T-PAMI, 36(8) August 2014.

Psychophysics pipeline

1. Render Class Canonical View (CCV) Candidates

2. CCV Classifier

3. Manipulate Chosen Variable

5. Generate Psychometric Curve

confidence

confidence

What standard options do we have to solve this problem?

Binary Classification

Multi-class 1-vs-All Classification

1-class Classification

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and "R. Williamson. Estimating the Support of a High-dimensional Distribution," Technical report, Microsoft Research, 1999.

"All positive examples are alike; each negative example is negative in its own way"

Zhao and Huang (with some help from Tolstoy) CVPR 2001

Vision problems in order of "openness"

Let's formalize openness

openness =
$$1 - \sqrt{\frac{2 \times |\text{training classes}|}{|\text{testing classes}| + |\text{target classes}|}}$$

Examples of openness values

	Targets	Training	Testing	Openness
Typical Multi-class	Х	Х	Х	0
Face Verification	12	12	50	0.38
Typical Detection	1	100,000	1,000,000	0.55
Object Recognition	88	12	88	0.63
Object Recognition	88	6	88	0.74
Object Recognition	212	6	212	0.83

Fundamental multi-class recognition problem

A. Smola, "Learning with Kernels," Ph.D. dissertation, Technische Universität Berlin, Berlin, Germany, November 1998.

Open Space

Open Space

- Open space is the space far from known data
- We need to address the infinite half-space problem of linear classifiers
- Principle of Indifference*
 - If there is no known reason to assign probability, alternatives should be given equal probability
 - One problem: we need the distribution to integrate to 1!

Open Space Risk

Open Space Risk: the relative measure of open space to the full space

The open set recognition problem

Preliminaries

Space of positive class data: \mathcal{P} Space of other known class data: \mathcal{K} Positive training data: $\hat{V} = \{v_1, ..., v_m\}$ from \mathcal{P} Negative training data: $\hat{K} = \{k_1, ..., k_n\}$ from \mathcal{K} Unknown negatives appearing in testing: \mathcal{U} Testing data: $\mathcal{T} = \{t_1, ..., t_z\}, t_i \in \mathcal{P} \cup \mathcal{K} \cup \mathcal{U}$

Assume the problem openness is > 0
The open set recognition problem

Minimize open set risk:

What's missing from our definition of open space risk?

open space

The definition doesn't tell us how to define ${\cal O}$

Incorporating open space risk into a model

• Discriminative models?

Don't address unknown unknowns in open space

• Generative models?

Don't address unknown unknowns in open space

Hard negative mining (Felzenszwalb et al. 2010)?
 Not possible to mine examples from unknown classes

Abating Process

 Model enforced decay of probability away from supporting evidence

The Compact Abating Probability Model

Conceptual example: if we are labeling location data using training data only from Campinas, Brazil, it would be risky it would be risky to apply that model to South Bend, Indiana

Idea: ensure that the recognition function is decreasing away from the training data, so that thresholding it limits the labeled region.

Definition of Open Space

sample x_i

Treat r as a problem specific parameter

Abating Bound

When $\forall x, \exists x^* \mid f(x) \leq A(||x - x^*||)$, *f* is abating because the spatial influence decreases with distance from x^*

Abating Probabilistic Point Model

Fusion Operator
(e.g., sum or product)

$$M(x) = p_f(F(K(x, x_1) \dots K(x, x_m)); y)$$
Model
Probability of points associating
becomes less intense as the spatial

separation of any two points increases.

ſ

44

Fused Abating Property

After fusion there is an abating bound function centered at x_0 such that the fused value F is bounded from above by that abating function.

$$F(K(x, x_1) \dots K(x, x_m)) \le A_{x'}(\|x' - x\|)$$

Abating Bound Function

Compact Abating Probability (CAP) Model

Features beyond a given thresholded τ from the closest training point have zero probability

Theorem 1

Let $M_{\tau, y}(x)$ be a probabilistic recognition function that uses a CAP model over a known training set for class y, where $\exists x_i \in \mathcal{K} \mid M_{\tau, y}(x_i) > 0$. Let open space risk be $R_{\mathcal{O}}(f)$ and open space be \mathcal{O} . If r satisfies $r > \tau$, then $R_{\mathcal{O}}(M_{\tau, y}) = 0$,

What does this mean?

When the CAP distance threshold is smaller than the open space radius, the CAP model has zero open space risk.

Proof of Theorem 1

Let x be any point in \mathcal{O} . Since $x \in \mathcal{O}$ implies $x \notin \bigcup_{i \in N} B_r(x_i)$, we have $\forall x_i \in \mathcal{K}, ||x - x_i|| > r > \tau$. Therefore, by the compact abating property $M_{\tau, y}(x) = 0$. Placing this into the numerator of $R_{\mathcal{O}}(f)$ yields $\int_{\mathcal{O}} M_{\tau, y}(x) dx = 0$ and zero open space risk. \Box

Corollary 1

Thresholding CAP model probability manages Open Space Risk

For any CAP model, considering only points with sufficiently high probability will reduce open space risk. In particular, consider a canonical sum kernel-based CAP model with a probability threshold $0 \le \delta_{\tau} \le 1$ such that for the set of points $x_i \in \mathcal{K}$ and coefficients $\vartheta_i > 0$ $p_f(\sum_i \vartheta_i K(x, x_i); y) \ge \delta_{\tau}$. Increasing δ_{τ} decreases open space risk, and there exists a δ_{τ}^* such that any greater threshold produces zero open space risk

How do we get from Corollary 1 to an algorithm?

- No guarantee that the model assigns positive labels within the compact support region
 - CAP ensures that there is a zero probability of doing so outside the region
- Quality of the CAP model depends on how well the probabilities model the actual underlying positive region
- 1-class SVM + Non-linear (RBF) kernel

Theorem 2

RBF One-Class SVM yields CAP model

Let $x_i \in \mathcal{K}$, i = 1...m be the training data for class y. Let O-SVM be a 1-class SVM with a square integrable monotonically decreasing RBF kernel K defined over the training data, with associated Lagrangian multipliers $\alpha_i > 0$, then $\sum_i \alpha_i y_i K(x, x_i)$ yields a CAP model. \Box

Proof of Theorem 2

Since 1-Class SVM has only positive data, we can view this function as a canonical sum over positive definite kernels. Let $g = \sum_i \vartheta_i = \sum_i \alpha_i y_i$. Let $i^* = \operatorname{argmin}_i ||x' - x_i||$, then it is sufficient to let $A_{x'} = gK(x, x_{i^*})$, which by the theorem's kernel assumption is monotonically decreasing and in the space of square integrable functions. Hence $gK(x, x_{i^*})$ is an abating bound function for the sum, yielding a CAP model.

Goal: Multi-class Open Set Recognition

Model: Compact Abating Probability

Do any of the well known approaches from the literature apply?

Kernel Density Estimation (KDE)

D.M.J. Tax, Ph.D. Dissertation "One-class classification: Concept learning in the absence of counter-examples" 2001

- 1. Fit a Gaussian distribution to the positive training data for a class
- 2. Empirically estimate a threshold au over the resulting density

Kernel Density Estimation

Comparison of 1D bandwidth selectors 💿 BY-SA 3.0 Drleft

KDE Pitfalls

- Nearly always results in overfitting for visual recognition problems
- Choice of Gaussian distribution questionable in many circumstances
- How do we estimate a good au ?

Support Vector Data Description (SVDD)

D.M.J. Tax and R.P.W. Duin: Support vector data description. Machine Learning 54, 45–66

• Hypersphere with the minimum radius is estimated around the positive class data that encompasses almost all training points.

Support Vector Data Description (SVDD)

Image credit: Shen et al. Sensors 2012

Support Vector Data Description (SVDD)

- Sensitive to feature scaling (Tax and Duin ASCI 2002)
- Difficult to solve using good numerical optimization (Chang et al. NTU Tech. Report 2013)
- Far less effective than binary classifiers when some sampling of negatives is available
 - Overfits the training data

1-Class SVM

- Only positive data at training time
- "Origin" defined by the kernel serves as the only member of a "second class"
- Training object yields a binary classifier f
- When used, usually for outlier or anomaly detection

1-Class SVM Objective

v controls the upper bound on training error

1-Class SVM Implementation

LIBSVM (linear and RBF)

Usage: svm-train [options] training_set_file [model_file] options:

-s svm_type : set type of SVM (default 0)

- 0 -- C-SVC (multi-class classification)
- 1 -- nu-SVC (multi-class classification)
- 2 -- one-class SVM
- 3 -- epsilon-SVR (regression)
- 4 -- nu-SVR (regression)

Why didn't the 1-class SVM catch on?

- Zhou and Huang *Multimedia Systems* 2003
 - Kernel and parameter selection
 - Gaussian kernels lead to over-fitting
 - Parameters chosen in *ad hoc* fashion
 - An issue in other domains too!

Problems with Existing Models for Binary Problems

Normalized decision scores for 1-Class SVM

Normalized decision scores for Binary SVM

Other machine learning approaches

- M. Rohrbach, M. Stark, and B. Schiele, "Evaluating Knowledge Transfer and Zero-Shot Learning in a Large-Scale Setting," in IEEE CVPR, 2011.
- C. H. Lampert, H. Nickisch, and S. Harmeling, "Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer," in IEEE CVPR, 2009.
- E. Bart and S. Ullman, "Single-example Learning of Novel Classes Using Representation by Similarity," BMVC, 2005.
- M. Palatucci, D. Pomerleau, G. Hinton, and T.M. Mitchell, "Zero-shot Learning with Semantic Output Codes," NIPS, 2009.
- L. Wolf, T. Hassner, and Y. Taigman, "The One-shot Similarity Kernel," ICCV 2009.
- G. Heidemann, "Unsupervised Image Categorization," Image and Vision Computing, vol. 23, no. 10, pp. 861–876, October 2004.

Open World Recognition

Related Work

Recall the CAP Model:

Theorem on Open Space Risk for Model Combination

Theorem: Open Space Risk for Transformed Spaces

