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Companion Website

All material for this tutorial is available at:
http://www.wjscheirer.com/misc/openset/

(Also linked to from the CVPR 2016 Website)
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Senchmarks in computer vision

Assume we have examples from all classes:

Airfield > Gas Station

Places? Data Set (part of ILSVRC 2016)



Out in the real world...

Be on the lookout for blue Ford sedans

while rejecting the trees, signs, telephone poles...

M. Milford, W.J. Scheirer, E. Vig, A. Glover, O. Baumann, J. Mattingley, and D.D. Cox, “Condition Invariant Top-Down Visual Place
Recognition,” ICRA 2014.



Open Space in Classification

Closed Space
Open Space




What is the general recognition
problem?

Duin and Pekalska™: how one should approach
multi-class recognition is still an open issue

- |s it a series of binary classifications?
- Is it a search performed for each possible class?

- What happens when some classes are ill-sampled,
not sampled at all or undefined?

R. P. Duin and E. Pekalska, “Open Issues in Pattern Recognition,” in Computer Recognition Systems, M. Kurzynski,
E. Puchala, M. Wozniak, and A. Zolnierek, Eds. Springer, 2005, pp. 27-42.



“There are known knowns..."

known classes: the classes with
distinctly labeled positive training
examples (also serving as negative
examples for other known classes)

known unknown classes: labeled
negative examples, not necessarily
grouped into meaningful categories

unknown unknown classes: classes
unseen in training



Definitions

Closed Set Recognition: all testing classes are
kKnown at training time

Open Set Recognition: incomplete knowledge of
the world is present at training time, and unknown
classes can be submitted to an algorithm during
testing



The burden for the visual
recognition community

e Results look better than they really are, which is misleads
practitioners

o “Off-the-shelf” classifiers are not sufficient to solve the
problem

 Open set problems are found in nearly every case where
recognition algorithms are present
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A surprising finding...

Accuracy

Closed set testing on MNIST
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Adapted from an image by D. D. Cox
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Read-out layer

Feature maps
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—volving images to match CNN classes
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A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are Easily Fooled,” CVPR 2015.



But you don't have to use tricky manipulations

GoogleNet Output

Label: Hammerhead
Shark Label: Blow Dryer Label: Mosque

E .

Label: Syringe Label: Trimaran Label: Missile




Are performance measures
misleading us?




Psychophysics on the Model
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W.J. Scheirer, S. Anthony, K. Nakayama, and D. D. Cox, “Perceptual Annotation: Measuring Human Vision to Improve
Computer Vision,” IEEE T-PAMI, 36(8) August 2014.



Psychophysics pipeline
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confidence

Airliner - Gaussian Blur

AlexNet
CaffeNet
GoogleNet
VGG-16
VGG-19




confidence

1.0

0.5

Cat - Gaussian Blur

- AlexNet
- CaffeNet
- GoogleNet
= VGG-16
w— VGG-19

gamma



confidence

1.0

Chicken - Gaussian Blur

- AlexNet

- CaffeNet

- GoogleNet
VGG-16
VGG-19




What standard options do we have
to solve this problem?




Binary Classitication
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Multi-class 1-vs-All Classification
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1-class Classification

B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and “R. Williamson. Estimating the Support of a High-dimensional Distribution,”
Technical report, Microsoft Research, 1999.
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"All positive examples are alike; each
negative example is negative In its
own way”

/hao and Huang (with some help from Tolstoy)
CVPR 2001

X. Zhou and T. Huang, “Small Sample Learning during Multimedia Retrieval using BiasMap,” in IEEE CVPR, 2001.
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Vision problems in order of “openness”

Face Open Set

Multi-class Classification . . Detection .
Verification Recognition

- -

Closed I I I I Open >
1 1 | |
Training and Claimed One class, Multiple known
testing samples identity, everything else classes, many
come from possibility for  in the world is unknown
known classes impostors negative classes

W.J. Scheirer, A. Rocha, A. Sapkota, and T. Boult, “Towards Open Set Recognition,” IEEE T-PAMI, 35(7) July 2013.



Let's formalize openness

2 X |training classes|

openness = 1 — ,
testing classes| + |target classes|
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-xamples of openness values

Targets Training Testing Openness

Typical Multi-class X X X 0]
© FaceVerficaon 12 12 0 038
""""" Tpical Detecton 1 100000 1000000 055
""" ObjectRecognion 88 12 88 063
""" ObjectRecogniton 88 6 88 074

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Object Recognition 212 ¢} 212 0.83



-undamental multi-class
recognition problem

argmin{Rz(f): /RxN (z,y, f(z) )}
4 / /

|deal Risk L.oss Function Joint Distribution

Undefined for
open set recognition!

A. Smola, “Learning with Kernels,” Ph.D. dissertation, Technische Universitat Berlin, Berlin, Germany,
November 1998.
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en Space

Negatives
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Open Space

* Open space is the space far from known data

* We need to address the infinite half-space
problem of linear classifiers

* Principle of Indifference”

- If there is no known reason to assign probability,
alternatives should be given equal probability

- One problem: we need the distribution to integrate
to 1!

J.M. Keynes, A Treatise on Probability. Macmillan & Company, Limited, 1921.
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Open Space Risk

Open Space Risk: the
relative measure of
open space to the full
space

open space

/ xL )X
Ro(f) = Jo flz)d

N fSo f(x)dx
/

Open space + positive
training examples
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The open set recognition problem

Preliminaries
Space of positive class data: P

Space of other known class data: K
Positive training data: 7= {vi, ..., v} from P
Negative training data: K = {ki, ..., k.} from K
Unknown negatives appearing in testing: ‘U
Testing data: T={n,....t.}, e PU KU U

Assume the problem openness is > 0
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The open set recognition problem

Minimize open set risk:

argmin{ (f) + MRe(f(V UK))}

feH /

Open Space Regularization
Risk Associated Constant
with U

Empirical Risk Function
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What's missing from our definition of
open space risk?

open space

_ fo'/f(a:)dm
fSo f(z)dx
/

Open space + positive
training examples

Ro(f)

The definition doesn’t tell us how to define ©
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Incorporating open space risk into
a model

e Discriminative models?

Don’t address unknown unknowns in open space
* Generative models?

Don’t address unknown unknowns in open space

* Hard negative mining (Felzenszwalb et al. 2010)7

Not possible to mine examples from unknown classes
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Abating Process

* Model enforced decay of probability away from
supporting evidence

Monotonically
decreasing prob.

Positive training data

W. Scheirer, L. Jain, and T. Boult, “Probability Models for Open Set Recognition,” IEEE T-PAMI 2014
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The Compact Abating Probability Model

Conceptual example: it we are labeling location data using
training data only from Campinas, Brazil, it would be risky it
would be risky to apply that model to South Bend, Indiana
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ldea: ensure that the recognition function is decreasing
away from the training data, so that thresholding it limits
the labeled region.
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Definition of Open Space

O=5,- | ) Br(x)

iEJV

closed ball of radius r

centered around training
sample x;

Treat r as a problem specific parameter
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Abating Bouno

Ve,z, 0 0< K(x,x;) < A(||lz — x;]|)

AN

Positive Definite Non-negative finite square

Kernel (e.g., RBF) integrable continuous
decreasing function

when vz, Jo* | f(z) < A(llz — 2*|),
fIs abating because the spatial influence decreases
with distance from x*
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Abating

/

Model

Probabllistic

Point Model

Fusion Operator

/ (e.g., sum or product)

M(z) = py(F(K(z,21) - .. K(2, )5 )

/

Probability of points associating
becomes less intense as the spatial
separation of any two points increases.
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Fused Abating Property

After fusion there is an abating bound function
centered at xo such that the fused value F'is
bounded from above by that abating function.

F(K(z,z1)... K(z,zm)) < Ay (||x

Abating Bound
Function
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Compact Abating Probability (CAP) Model

Threshold

/

min ||z — z;|| > 7 = M (x) =0

T, EKX /

Compact Abating
Probability Function

Features beyond a given thresholded 7 from the closest training
point have zero probability
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Theorem 1

Let M: ,(x) be a probabilistic recognition function that uses a
CAP model over a known training set for class y, where dx; € K|

M: ,(x;) > 0. Let open space risk be Ro (f) and open space be
O. Ifr satisfies r >z, then Ro (M:,,) =0,

What does this mean”?

When the CAP distance threshold is smaller than the open
space radius, the CAP model has zero open space risk.
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Proof of Theorem 1

Letx be any point in ©. Sincex € @ implies x & U;cn Br(x:),
we have Vz; € K, ||z — x;|| > r > 7. Therefore, by the
compact abating property M. (x) = 0. Placing this into the
numerator of Ro (f) yields |, M (x)dx=0 and zero open
space risk. O
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Corollary 1

Thresholding CAP model probability manages Open Space Risk

For any CAP model, considering only points with sufficiently high
probability will reduce open space risk. In particular, consider a
canonical sum kernel-based CAP model with a probability threshold

0 <. <1 such that for the set of points x;e XK and coefficients ¥; >0
pr(D 0, 9K (z,x;);y) > 0-. Increasing o. decreases open space risk,

and there exists a o." such that any greater threshold produces zero
open space risk
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How do we get from Corollary 1 to
N algorithm?

QD

 No guarantee that the model assigns positive labels
within the compact support region

CAP ensures that there is a zero probability of doing so outside
the region

e Quality of the CAP model depends on how well the
probabilities model the actual underlying positive region

 1-class SVM + Non-linear (RBF) kernel

50



Theorem 2

RBF One-Class SVM yields CAP model

Letxie K,i=1...m be the training data for class y. Let O-SVM

be a 1-class SVM with a square integrable monotonically
decreasing RBF kernel K defined over the training data, with
associated Lagrangian multipliers a; > 0, then Z; o;yiK(x,x;)
yvields a CAP model. O
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Proof of Theorem 2

Since 1-Class SVM has only positive data, we can view this
function as a canonical sum over positive definite kernels. Let

g=>,V =), ,05Vi Leti* = argmin, ||z’ — x;||, then it is
sufficient to let Ay = gK (z, i), which by the theorem’s kernel

assumption is monotonically decreasing and in the space of
square integrable functions. Hence 9K (x,i)is an abating
bound function for the sum, yielding a CAP model.
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Goal: Multi-class Open Set Recognition

?
?
?
?
“unknown unknown” Positive set of

class finite measure
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Model: Compact Abating Probability

Monotonically Prob. from kernel machine varies locally
decreasing prob. with distance to training points

Threshold on prob. P(3]|%) > 6x
P(3[?) < 6x

Class ‘3’ < —
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Do any O

" the well known approaches

fro

M the literature apply”
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Kernel Density Estimation (KDE)

D.M.J. Tax, Ph.D. Dissertation “One-class
classification: Concept learning in the absence of

counter-examples” 2001

1. Fit a Gaussian distribution to the positive training data
for a class

2. Empirically estimate a threshold 7 over the resulting
density

56



Kernel Density Estimation

Density function
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KDE Pittalls

Nearly always results in overtitting for visual
recognition problems

Choice of Gaussian distribution questionable in
many circumstances

How do we estimate a good T ?
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Support Vector Data Description (SVDD)

D.M.J. Tax and R.P.W. Duin: Support vector data
description. Machine Learning 54, 45-66

e Hypersphere with the minimum radius is estimated
around the positive class data that encompasses
almost all training points.
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Support Vector Data Description (SVDD)

outlier hyper sphere
¥ (boundary)

target

Image credit: Shen et al. Sensors 2012
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Support Vector Data Description (SVDD)

» Sensitive to feature scaling (Tax and Duin ASCI 2002)

e Difficult to solve using good numerical optimization
(Chang et al. NTU Tech. Report 2013)

* Far less effective than binary classifiers when some
sampling of negatives is available

» Overfits the training data
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1-Class SVM

Only positive data at training time

“Origin” defined by the kernel serves as the only
member of a “second class”

Training object yields a binary classifier f

When used, usually for outlier or anomaly detection

62



1-Class SVM

Origi

Image credit: L. Manevitz and M. Yousef, “One-Class SVMs for Document Classification” JMLR 2001
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1-Class SVM Objective

offset parameterizing

/ hyperplane
mm— Hw I& —I—— Zﬁz
=1 \ slack

regular|zatlon variables
parameter

A

kernel

subject to

v controls the upper bound on training error
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1-Class SVM Implementation

LIBSVM (linear and RBF)

Usage: svm-train [options] training_set file [model file]

options:

-s svim_type : set type of SVM (default 0)
0 -- C-SVC (multi-class classification)
1 -- nu-SVC (multi-class classification)

2 -- one-class SVM
3 -- epsilon-SVR (regression)
4 -- nu-SVR (regression)
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Why didn’t the 1-class SVM catch on”

e /hou and Huang Multimedia Systems 2003

- Kernel and parameter selection

» (Gaussian kernels lead to over-fitting
» Parameters chosen in ad hoc fashion

» An issue in other domains too!

X. Zhou and T. Huang, “Relevance Feedback in Image Retrieval: A Comprehensive Review,” Multimedia Systems, vol. 8, no. 6,
pp. 536-544, 2008.
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Problems with Existing Models tor
Sinary Problems

Binary SVs

1-class RBF SVM
Decision Boundary
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Normalized decision scores for 1-
Class SVM

T g1
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Normalized decision scores for
Binary SVM
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Other machine learning approaches

e M. Rohrbach, M. Stark, and B. Schiele, “Evaluating Knowledge Transfer
and Zero-Shot Learning in a Large-Scale Setting,” in IEEE CVPR, 2011.

e C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning To Detect Unseen
Object Classes by Between-Class Attribute Transfer,” in IEEE CVPR, 20009.

e E. Bart and S. Ullman, “Single-example Learning of Novel Classes Using
Representation by Similarity,” BMVC, 2005.

e M. Palatucci, D. Pomerleau, G. Hinton, and T.M. Mitchell, “Zero-shot
Learning with Semantic Output Codes,” NIPS, 2009.

e | Wolf, T. Hassner, and Y. Taigman, “The One-shot Similarity Kernel,” ICCV
20009.

* G. Heidemann, “Unsupervised Image Categorization,” Image and Vision
Computing, vol. 23, no. 10, pp. 861-876, October 2004.
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Open World Recognition

Label Data
e World with Knowns (K) & e LU: Labeled
Unknowns Unknowns (UU) e NU: Novel Unknowns e K: Known
( Unknowns
Detect as Incremental Class }‘ i ]
[ Learning

UnkU vl

A. Bendale and T. E. Boult. "Towards open world recognition,” CVPR 2015 71
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Related Work

Scalable Learning
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Recall the CAP Model:

Class Mean

Threshold on
Probability \

<— Spatially decreasing probability
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heorem on Open Space Risk for Model
Combination

Range of T reduced R,
increased R,
A
o -\ Increased R,
reduced R,

v/ N\ . 7 N—

Recognition function 6 2 0 there exists T* such that
M. ,(x) open space risk R, is less than &



‘heorem: Open Space Risk for
ransformed Spaces

>
Linear Transfrom
e.g. Metric Learning




