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The Statistical Extreme Value Theory (EVT)

Why EVT for visual recognition problems?
o Powerful explanatory theory (Scheirer et al. T-PAMI 2011)

« Effective tool for statistical modeling of decision
boundaries (Broadwater et al. I[EEE T. Signal Processing
2010, Fragoso and Turk CVPR 2013)

- Calibration models (Scheirer et al. ECCV 2010)



The Extreme Value Theorem

Let (s1, 52, ..., sn) D€ @ sequence of i.1.d. samples. Let
M, =max{si, ..., s»}.|f @ sequence of pairs of real
numbers (an, bx) exists such that each a, > 0 and
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then if Fis a non-degenerate distribution function, it
belongs to one of three extreme value distributions?.

The i.i.d. constraint can be relaxed to a weaker
assumption of exchangeable random variables?.

1. S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, 1st ed. World Scientific
Publishing Co., 2001.

2. S. Berman, “Limiting Distribution of the Maximum Term in Sequences of Dependent Random Variables,”
Ann. Math. Stat., vol. 33, no. 3, pp. 894-908, 1962.



The Welbull

Distribution

The sampling of the top-n scores always results in an EVT
distribution, and is Weibull it the data are bounded.

flz A k) =< §(§)

Choice of this distribution is not dependent on the
model that best fits the entire non-match distribution.

1. NIST/SEMATECH e-Handbook of Statistical Methods, ser. 33. U.S. GPO, 2008



Fitting an EVT Distribution

Overall Distribution of Scores
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e EVT applies regardless of the overall distribution

e Sampling the extrema in the tail of an overall distribution
always results in an EVT distribution



s there a difference between central
tendency modeling and EVT?

e Sample set of 1,000 values from a standard
normal distribution

e Compute means over 10,000 trials

What does the histogram look like?



Bell curve

Histogram for Mean
[
A PN

/] ™~
10-

i

Count
T
T
1

5-

-l e

-0.10 -0.05 0.0 0.05 0.10

Mean



What it we’re interested Iin extrema
points instead”

e Sample set of 1,000 values from a standard
normal distribution

e Retain the maximums over 10,000 trials

What does the histogram look like?



The peak is now at 3.2, and there Is

noticeable skew
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Probability estimation (R): central

tendency

Improbable
outcome

Means from the 10,000 trials

library("MASS") ‘////////////

fitdistr(bufferMean, "normal")
# mean sd

# -0.0001344194 0.0313828480

# (0.0003138285) (0.0002219102)

pnorm(0, -0.0001344194, 0.0313828480, FALSE)
# [1] 0.4982913

pnorm(1, -0.0001344194, 0.0313828480, FALSE)
# [1] 3.611041e-223

pnorm(2, -0.0001344194, 0.0313828480, FALSE)
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Probability estimation (R): EVT

Probable
outcome

_
T~

Maximums from the 10,000 trials

library(SpatialExtrigffl/////////
gevmle (bufferMax)

loc scale shape
3.08305916 0.29802546 -0.07158273

pgev(0, 3.08305916, 0.29802546,
#[1] 1

pgev(1l, 3.08305916, 0.29802546,
#[1]1 1

pgev(2, 3.08305916, 0.29802546,
#[1]1 1

pgev(3, 3.08305916, 0.29802546,
#[1] 0.7322732

pgev(4, 3.08305916, 0.29802546,
#[1] 0.03047941

-0.07158273,

-0.07158273,

-0.07158273,

-0.07158273,

-0.07158273,

FALSE)

FALSE)

FALSE)

FALSE)

FALSE)
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A good alternative to central
tendency modeling

training training
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(2) Binary Discriminative Model

(b) Per class Gaussian Model + Bayesian decision
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(c) EVT Fit for the min and max tail of each
class + Bayesian decision
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-Xxample two-category discrimination
task along a parametric stimulus axis

Uniform Distribution

; Gaussian Model Fit . EVT Model Fit
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Extrema as visual features

Tanaka et al. - Atybicalit Leopold et al. - Tanaka and Farah -
anaka et al. - Atypicality Caricaturization Visual Attributes
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Itti et al. - Barenholtz and Tarr -
Visual Saliency Part Boundaries

E. Barenholtz and M. Tarr. Visual judgment of similarity across shape transformations: Evidence for a compositional model of articulated
objects. Acta Psychologica, 128:331- 338, May 2008.

J.W. Tanaka and M.J. Farah. Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology A: Human Experimental
Psychology, 46:225-245, 1993.

D. Leopold, I. Bondar, and M. Giese. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature, 442:572-575,
August 2006.

L. Itti and C. Koch. Computational Modeling of Visual Attention. Nature Reviews Neuroscience, 2(3):194-203, February 2001.

J.W. Tanaka and O. Corneille. Typicality effects in face and object perception: Further evidence for the attractor field model. Perception &
Psychophysics, 69(4):619-627, May 2007.
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How does EVT apply to
computer vision?



Meta-Recognition Theory

Meta-recognition is recognizing when a recognition system is working
or failing. It is important for threshold selection, failure prediction and

improving fusion.
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W. J. Scheirer, A. Rocha, R. J. Micheals, T. E. Boult, “Meta-Recognition, the Theory and Practice of Recognition
Score Analysis,” vol. 33, no. 8, 2011



Faillure Prediction

Can we recognize, in some automated fashion, if a recognition
system result is a success or a failure?

If so, can we quantify the probability of success or failure?

Success or Failure? Success or Failure?
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Meta-Recognition as failure
porediction
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Predicting Failures of Vision Systems

/Zhang et al. CVPR 2014
Learn conditions that cause a target algorithm to fail

(a) (b) (c) (d)
Predicted Predicted Predicted Predicted
Bad Good Bad Good

P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh, “Predicting Failures of Vision Systems,” CVPR 2014



Statistical EVT Failure Prediction

* Get scores, sort and take top N

* Fit an extreme value distribution to get model of
non-match distribution, exclude top score

* Determine if top score is outlier from distribution, If
so predict success. Else predict tailure

* Detect outlier using fraction CDF below the potential
outlier. 99.99999% Is a good test!



Statistical EVT Failure Prediction
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EVI-based failure prediction

* Using meta-recognition, evaluated 12 algorithms
across 4 problems. Always significantly better than
simple thresholds on score.

v
v
v

—ace Biometrics
—ingerprint Biometrics

Multi-biometric fusion

v'SIFT + earth-mover distance based object recognition

v'Content-based image retrieval (4 algorithms)

* Led to new fusion algorithm, better than traditional
algorithms on all datasets considered.



-xample prediction accuracy
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Face recognition algorithm Cis 89.4%, 84.5% for face G,
Fingerprint LI 86.5% for and 92.5% for Fingerprint RI
Good failure prediction for all of them, way better than score
thresholding



RPFAR
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Examined impact of i.i.d. assumptions and sizes
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What else can Meta-Recognition do”

Decision fusion (fuse only those that are not predicted to fail)
or weighted score fusion.

For statistical EVT prediction use:

w-score fusion where:
w-score(x) = CDFWeibull(x)

Use w-score to weight data for fusion, i.e., compute average
w-score over different algorithms/modalities.

W. J. Scheirer, A. Rocha, R. J. Micheals, T. E. Boult, “Robust Fusion: Extreme Value Theory for Recognition Score
Analysis,” ECCV 2010.



W-score normalization

Require: a collection of scores S, of vector length m,
from a single recognition algorithm j;

1. Sort and retain the n largest scores, sy, ..., sn € S;

2. Fit a Welibull distribution Wsto s, ..., ss, SKipping
the hypothesized outlier;

3. While k£ <m do
4. s'v= CDF(sk, Ws)
5. k=k+1

6. end while

27



Fusion Performance

W-SCOre

Z-SCOre 094

0.9

Rank

w-score fusion outperformed z-score with sum (or product)
fusion on all experiments. In general, the lower the
performance the greater the differential gain.
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—usion Problems For:

 Existing theories for fusion algorithms presume
consistent data and work to address noise. What
happens when user intentionally attempts to thwart
the system by changing/destroying their data”

* What is needed is an approach to predict when a
particular modality/algorithm is failing and then
ignore It.



Faillure Prediction and Fusion

Traditional Fusion can be degrade system performance,
especially when adversaries try to defeat it.

£ @ . Face_t_ Rejected
¥ —> Recogniton  ——> (not in DB)
i Algorithm

Ramirez Abadia Meta-recognition can predict and select
correct modality.

> Recognized V
—> Recognition (as Ramirez Abadia)
Algorithm

Meta-recognition is a useful mathematical theory for fusion
that predicts “failing” data



Classic fusion can make things worse!

MR-L fusion for
Face G and Finger Li
Using top-10 matches

Raw Finger Li

Classic “Decision” fusion
for Face G and Finger Li

Raw Face G

Chimera Face G Multi-Modal Algorithm Blending Fusion

T

0.9

0.7

GAR

T

0.6

0.5

face G ——
fingerli -2
face G fing. li, decision fusion ----e----
DCT G and li FP fusion &;
Ay » G and li FP fusion
A2 10 G and li FP fusion

0.001

0.01

0.1
FAR

BSSR1 has only 600 paired sets of data and was too easy. So we made chimera data,
mixing all fingers and faces (6000 samples).

This shows the real power of MR- automatically ignoring bad data!




Failure-prediction W-score fusion vs z-score

« W /

* 81.6 65.2 face C (impostor), finger LI:
« 88.1 67.4 face C (impostor), finger RI:
* 816 65.9 face G (impostor), finger LI:

( ),
( ),
( ),
* 88.1 68.1 face G (impostor), finger RI:
( ),
( ),

« 73.3 58.0 face C (impostor), face G (impostor), finger LI:
« 79.8 60.6 face C (impostor), face G (impostor), finger RI:

3000 samples from NIST BSSR1 data

Rank 1 fusion with z-scores is highly impacted by failing
modalities; the failure prediction fusion with w-scores is very
close to rank 1 of the modality that isn’t failing, even with
multiple failures.



Support Vectors

e Probability calibration is only
well defined close to the
decision boundary (Bartlett
and Tewari JMLR 2007)

e Boundary is defined by the
training samples that are
effectively extremes,

- Calibration models should be
based on EVT

33



Calibration for decision boundaries

Weibull Fit to Tail
Near Decision Boundary

w-scores = CDF of
Not Male Weibull Model
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NOT Male S Male

1. Get tail of decision scores from the opposite class
2. Fit Weibull to values in the tail:

&(g)k—le—(x/k)"

>
fEHEER vt

z <0
3. Compute normalized scores using CDF of the Weibull:

F(z;k,\) =1— e @/N"

W. J. Scheirer, N. Kumar, P. N. Belhumeur, T. E. Boult, “Multi-Attribute Spaces: Calibration for Attribute Fusion and
Similarity Search,” CVPR 2012



Fusion after normalization

S N

1. maximize over / s9=|| 4D || The goal is to find images I that
2. subject to A = F(T(s(D); W)) maximize the L; norm for each
3. for Vj € J satisfying 0<ai<4()<p<1 attribute j in the query setJ
Multi-Attribute Search Target Attribute Similarity Search
“Indian Females” “Male and Black Hair Like Target”
X
o:' I

—X
Indian —— Male ——

/ Male —

Q
X
Black _I-_Iaz'r
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Utility of the calibration model

(a) Unnormalized

Normalized

Autribute Scores “Men with Beard Multi-Attribute Space
and Pale Skin" —

3 a v
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(c) Multi-Arttribute Search “Indian Females™

% .~ /‘."‘

. X
Kumar etal. 2011 Indian~> _/

Our Approach

(d) Similar Attribute Search
Image wicth Target Attributes

“Faces as Chubby and Round
as in the image on the left”

Round Face

Our Approach
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Black Hair Pointy Nose
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Hy: Do query-only rankings match human ranking?

Black Hair Pointy Nose
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&Round Nose Round Face
Pale Skin
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H;: Do query+context rankings match human ranking?

Black Hair
&Smiling
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Rosy Cheeks
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&Lipstick

Pale Skin
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&Beard

Pale Skin

Black Hair Pointy Nose

Hy: Are query+context rankings better than query-only?

Pointy Nose
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Explormg Slmllarlty Search Results }

Per-attribute Similarity (WDW)
Score distribution for results of
qguery showing all non-zero scores
from top matches

7 Highlighted query image’s
similarity score to target
(first) image. No highlight
means not in top scores

.k/n

Histograms of absolute
difference of w-scores

Note clustering in scores o Illllllllll AR

---------------

and variations in shape
of distributions = ||_|_.|,.. |.




Sequential Score Adaptation with
-xtreme Value Theory

Same process as the w-score, but
swap out the Weibull distribution for
the Generalized Pareto Distribution:

—1/¢€
G(y707§):1_<1+%y) Y>>

_|_

where 0 > 0, £ € R, and x4 = max(z,0). ™

Application: Visual
Railway Track Inspection

X. Gibert-Serra, V. M. Patel, and R. Chellappa, "Sequential score adaptation with extreme value theory for robust
railway track inspection," Workshop on Computer Vision for Road Scene Understanding and Autonomous
Driving (CVRSUAD), Santiago, Chile, 2015.



Sampling and feature
correspondence

Fragoso and Turk CVPR 2013

P J |\
1

_______________________ Estimated
! Global Search I Model
| S
: |
I |
Confidence |;| Guided Model Quality |!

- > > .
Computation |1 | Sampler Generator Evaluation |1 Refinement
. |
: |
Lo [ Bad !

Correspondences

Guided Sampling Methodology with M-R Prediction

Robust Model Estimation

V. Fragoso and M. Turk, “SWIGS: A Swift Guided Sampling Method,” CVPR 2013
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M-R Rayleigh

Same meta-recognition algorithm, but constrain the
Weibull distribution to be Rayleigh distribution:

g2

R(s;0) = e 202,

!

Advantage: one parameter to fit

Estimate o from the closest scores s2.x using the
maximum-likelihood formula:

AN 2
g = Sj

1 k
\ 261 &
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Correct Matches
\ Incorrect Matches

-

Weibull model
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M-R Rayleigh vs. M-R Welbull

Feature correspondences

Top: SIFT, Bottom: SURF
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