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Part 3: Algorithms that Minimize the
Risk of the Unknown




Let's include open space risk in our
optimization problem




Slab Model

Negatives




Base Linear 1-vs-Set Machine



Generalization



Specialization



Open space risk for linear
slab model
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Open space risk for linear
slab model

Two additional terms
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Training and testing data

Space of positive class data: P

Space of other known class data: K
Positive training data: 7= {vi, ..., v} from P
Negative training data: K = {ki, ..., k.} from K
Unknown negatives appearing in testing: ‘U
Testing data: T={n,....t.}, e PU KU U
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Sketch of the 1-vs-Set Machine
training algorithm

1. Train a linear SVM fusing ¥ and K

2. Generate decision scores for each training point in 4
and K

3. Sort decision scores, where s is the minimum and s; is
the maximum

4. Initialize 4 to margin plane of £, and Q to s;

5. Iteratively move 4 to si+1 Or si.1, Q t0 551 Or 5541 tO MiNiMize
Rg(f) "‘ >\ng
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1-vs-Set Machine Plane

Refinement

Positive Pressure py >0 Negative Pressure ps <0

S — O

Plane A4 after initial : Plane A after refinement

optimization ’ <

with p, =-0.5

4
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1-vs-Set Machine Prediction

function PREDICT(¢, £, 4, Q)
if (4 <Af(x») and f(.) < Q) then Return +1
else Return -1
end if

end function

13



What could be better about the
1-Vs-Set Machine?

e Does not inherently support multi-class open set
recognition

* Does not support non-linear kernels

e Does not contain a CAP model

Lack of calibrated probability scores
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P-SVM: Modeling
Inclusion

Probability of

* Fit a robust single-class probability model over the
positive class scores from a discriminative binary

classifier

- Binary (RBF) classifier helps discriminate the positive
class from the known negative classes

- Single-class probability model adjusts decision
boundary to avoid misclassification of “unknowns”
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Consider a kernelized SVM

Bias Term

hix) = ny,;oziK(m,;, )+ b
i=1

/ N\

Support  RBF kernel
Vectors
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Fit model to tail of positive side of
decision boundary

Weibull Fit to Match Data

| 3 O
5 9
Non-Match Data - 2
0 . N
(Negative Side) =9
...m
+ + + + ==
+ +t + 4+ 7
+ + ,+ + +
T+

parameters = 0, =1, k), 4,
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Probability model for inclusion

xr—T
—(Ty)ny

Pr(ylz,0,) = Ep(y) Pr(z]y, 0,) = Ep(y)(1 —e

/ / /

Prior prob. Constant Weibull CDF
of class y defined by 6,

)
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Unnormalized Posterior Estimate

If all classes and priors are known, then
Bayes' theorem vyields:

1

€ B ZyEC ,O(y)P[(CU‘y, Gy)

But this isn’t true for open set recognition, so we let &= 1
and treat the posterior estimate as unnormalized
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Multi-class Open Set Recognition
with P--SVM

y* = argmax Pr(y|z,0,) subjectto Pr(y*|x,0,«) >0

yeC /

Min. threshold on
class probability
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Tail Size Estimation

 EVT tells us how to model extrema, but says
nothing about how many samples to model

- The difference between a tail size of 5% and a talil

size of 20% can produce a difference in recognition
accuracy of 15-20%

- Need automatic estimation
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Support Vectors as Extrema

e Support vectors are a type of extreme sampling that
effectively describes the class boundary

¢ |s there a known parametric relationship between training
data size, dimensionality, and the number of support
vectors? No

Alternative: consider extrema to be the points close to the
original decision boundary and count them
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Tall size estimation

When > 0, some points
iInside the positive

Indicator Function boundary included

/f// {1 ifhuﬂggf///'mm T = Y Bf(z;e)

0 otherwise \ zEMy

Positive Tall Size

Tail size approximation: T = max(3,% x |aT|)

/

wE[1.25—2.5]
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Tall size estimation

Number of Trials
Number of Trials

0 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraction of Data that is support vector (#SV/N)

First class folds

A 0.2 0.3 04 0.5 0.6

Fraction of Data that is support vector (#SV/N)

All class folds
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Normalized decision scores
for P-SVM

1111“1'111 1 I
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P-SVM Implementation

Patch to LIBSVM available at:
https://github.com/ljain2/libsvm-openset

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)
0--C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
5 -- open-set oneclass SVM (open_set_training_file required)
6 -- open-set pair-wise SVM (open_set_training_file required)
7 -- open-set binary SVM (open_set_training_file required)
8 -- one-vs-rest WSVM (open_set_training_file required)
9 -- One-class PI-OSVM (open_set_training_file required)
10 -- one-vs-all PI-SVM (open_set_training_file required)
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s PI-SVM what we're looking for for open
set recognition”

* Pros:
+ Supports multi-class open set recognition

+ Better generalization than the 1-vs-Set Machine

e Cons:

- One-sided calibration model (just probability of
inclusion)

- Does not make use of a CAP model
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NN+CAP

Let d. be the distance to the nearest neighbor of x

|T—d |

T

let dy > 7 = po(x) =0 and pu(z) =

In a multi-class setting, this results in a thresholded
NN algorithm that can reject an input as unknown.
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NN+CAP

e Pros:

+ With sufficiently dense sampling, NN+CAP
reduces to NN

+ Limiting error of no more than twice the Bayes
error rate

+ Simple to train
« Cons:

- Weak probability model
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The Weibull-calibrated SVM (W-SVM)

* Binary SVMs are better than 1-Class SVMs - how do
they fit into the context of CAP models?

« Unfortunately, the decision score isn't a canonical
sum. But calibration is possible (Hoffman et al. Annals
of Stat. 2008):

1. Collect all positive coefficients in one sum

2. Collect all negative coefficients into another sum

3. Split the bias between them

4. View SVM as applying a decision rule over which is more

similar

T. Hofmann, B. Schélkopf, and A. J. Smola. Kernel methods in machine learning. Annals of Stat., 2008.
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sinary

q

BF SVM incorporating a

CAP model

« Combine probabilities computed for both 1-class

and binary RBF SVMs

e 1-class SVM CAP model is a conditioner

| _— could be very small
it Po(ylx) > o, then

consider Po (y|x)
else

reject
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Dual tall fitting

Separating positive and negative data is useful

Assume a set of known classes vy

For a class y € Y, we can use positive scores from y to
estimate P'(y|x).

We can use negative scores from other known classes to
estimate P (Y \ y | x).
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Dual tall fitting

Density of
match scores

Weibull Fit to
Match Data

+ SVM Decision

', Boundary

Reverse Weibull Fit to
Non-Match Data

$9.402S Y21BW-Uou
jo Lisusg
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Dual tall fitting

Closed set scenario: P'(yx)=1-P(Y \ y|x)

In an open set scenario, we can’'t make the above
assumption.

To minimize open set risk, P"and P are considered only
when Po (y|x) > o,
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EV I Parameters

* Reverse Weibull and Weibull are defined by three
parameters

- location v, scale A, and shape &

e Maximum Likelihood Estimation to estimate the
best fits for n and

-V, My, Ky

- Vy, Ay, Ky
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Two independent estimates for

P(y [ fx))

Weibull CDF from match data

e

f(w)_V’n )F{,n

Py(ylf(x)) =1—e

Reverse Weibull CDF from non-match data

e

f(m)—l/w )K,,Lp

Py(y|f(z) = e
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Combining probability estimates

Two options:

Pn x Py the probability that the input is from the positive
class AND NOT from any of the known negative classes.

Pn + Py either a positive OR NOT a known negative.

For open set recognition, Py should be modulated by

other supporting evidence of the sample being positive.
Product is the preferred combo.
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Multi-class W-SVM recognition

free parameter

/

Indicator variable: 1, =1 it Po(y|x) > o;

y* =argmax Py () X Py () X ty
yey

subject to P« () X Py« () > 0r

/

free parameter
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Training a W-SVM Step-by-Step

e For simplicity, let’s focus on a single class (“3”)
 Two SVM models (1-class and binary)

* Three EVT distribution fits

* The collection of SVM models, EVT distribution

parameters, and thresholds constitute the W-
SVM.
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Step 1: Train a 1-class SVM f©

Class Label =°3’

RBF one-class SVM
yields a CAP model
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Step 2: Fit Weibull over tail of
scores from f°

Weibull Fit to Match Data

3 0
S 0
>
0 <
S o
(O )
wn
+ + + o +
R S
+ + + +
+ ++++ 7\‘O,O‘}O)K:O

Class ‘3’ 5:=0.001
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Step 3: Train a binary SVM f

0 O 0
0
0 (A
2
1 2 2
1 1
i 2
11 )
Class Label = ‘3’

Known Negative Classes =‘0’,°1’,2’
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Step 4: Fit

talls o

Density of
non-match scores

- scores from f

VT distributions over

Reverse Weibull Fit to Weibull Fit to
Non-Match Data Match Data
7\,1,0, Vy, Ky }W, Vn, Kn
5 O
I o
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a S
(7]

1
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W-SVM testing (known class)

e Let’s focus on the class we just trained for (“3”)
e SiX steps are necessary to test the input

* Assume four known classes (“0”, “17, “2”, “3”)
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Step 1: Apply 1-class SVM CAP
model for all known classes

Input: x =
Jox)=s0  fU(x)=s1
fox) =52 f(X)=s3



Step 2: Normalize all 1-class SVM
scores using EVI models

Ao,0, V0,0, Ko,0 Mo,1, Vo1, Ko,
— S0 -/ S1
Probability
Apply CDF for each class to each score —— model for test
instance: Po
7\~‘0,2) V0,2) K0,2 7\~‘0,3) V0,3) KO,S

Ss2 53
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Step 3: Test probabilities

Po(0|X) <01, 0=0; Po(1|x) <, 1 =0;
PO(2|X) > 6T, lo = 1 : Po(S‘X) > 6-[-, 3 = 1
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Step 4: Apply binary SVMs

f.()=s2  f (X)=s3



Step 5: Normalize all binary SVM scores
using EVI match and non-match models

An2, Vn2, Kn2 A2, Vw2, Ky2
| S92 f_
an,Z_ P(p,z

Apply 2 CDFs per class for each score

An3, Vn3, Kn3 Ay3, V3, Ky3

' 53 |
an,s_ wa:
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Step 6: Fuse and test probabilities

Pn,0(x) x PY,0(x) x 1o =0 <0nr
Pn,1(x) x PY,1(x) x 1 =0 < 0nr
Pn,2(x) x Py,2(x) x o= 0.001 < dr
Pn,3(x) x Py,3(x) x 3=0.877 > 0r
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Models for class ‘3" and the data point for
this example

Monoto.nically Prob. from kernel machine
decreasing prob. varies locally with distance to
bound ~ training points

Threshold on prob. P(3|3) > 84

<~ __ W-SVM thresholded region
= —
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W-SVM testing (unknown class)

* Assume four known classes (“0”, “1”, “2”, “3")

e Consider as input a member of a class that is
different from the training data (“Q”)

- This point will fall outside of the CAP thresholded region
(i.e., it exists in open space)

* Four steps are necessary to reject the input
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Step 1. Apply 1-class SVM CAP
model for all known classes

Input: x = @
fox)=s0 f7(x)=s1

fox)=s2  foAX)=s3
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Step 2. Normalize all 1-class SVM
scores using EVI models

}\‘0,0) VO,O) KO,O }\‘0,1) V0,1) K0,1
Probability
Apply CDF for each class to each score —— model for test
instance: Po
Mo,2, Vo,2, Ko,2 Mo,3, V0,3, Ko,3

Sso /53
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Step 3: Test probabilities

X) < 61’, lo = O, Po(1
X) < 61‘, o = O, PO(3

X)<6T,l1=0;
X)<6T, [3=O
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Step 4: Apply indicator variables to
binary SVMs

56



Mode
point -

s for class ‘3’ and the data

or this example

Monotonically Prob. from kernel machine

decreasing prob.

bound

Threshold on

varies locally with distance
to training points

__— < —
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W-SVM Implementation

Patch to LIBSVM available at:
https://github.com/ljain2/libsvm-openset

Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)
0--C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR
5 -- open-set oneclass SVM (open_set_training_file required)
6 -- open-set pair-wise SVM (open_set_training_file required)
7 -- open-set binary SVM (open_set_training_file required)
8 -- one-vs-rest WSVM (open_set_training_file required)
9 -- One-class PI-OSVM (open_set_training_file required)
10 -- one-vs-all PI-SVM (open_set_training_file required)
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Specialized Support Vector Machine (SSVM)
Junior, Wainer and Rocha, arXiv 2016
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Specialized Support Vector Machine
(SSVM)

Ensure bounded positively labeled open space by using
an RBF kernel and forcing the bias to be negative

b {—‘b‘@i —Y e ybu},

/ 2101 — 1

Determined via open set grid search procedure
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Specialized Support Vector Machine
(SSVM)

H g 3 X2
A ‘e
& =
Dataset (a) SVMc (b) SVMo  (c) OCSVMMC
2 X2
"
(d) ocSVMMC  (e) DBCMC  (f) DBCMC (g) 1VS
@®: K &
L L %
2 E .

(h) wSVM (i) SSVM¢ (j) SSVMo
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How can we evaluate open set
recognition in a controlled manner?

62



Accuracy as a statistic for open set

problems

TP A

-T'N

Accuracy =

IT'P+TN -

- P+ FN

Imagine the following case:

1/100 TP correct

100,000/100,000 TN correct

99.9% accuracy!
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--measure as a statistic for open set
oroblems

Consistent point of comparison across
iInconsistent precision and recall numbers:

Precision x Recall

F- — 2 X
HHEASULE Precision + Recall
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Open Set Object Recognition

Cross-data set methodology”
Training: Caltech 256

known
classes

i=ee o known
L@JN classes

%ba _unknown
E classes

Open Universe of 88 classes: 1 positive class, n training classes,
87 negative testing classes (532,400 images)

Open Universe of 212 classes: 1 positive class, » training classes,
211 negative testing classes (13,610,400 images)

A. Torralba and A. A. Efros, “Unbiased Look at Dataset Bias,” in IEEE CVPR 2011.



—eatures

Histogram of Oriented Gradients

(Dalal and Triggs 2005) © 2005 IEEE

N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in IEEE CVPR, 2005

LBP-like descriptor

Center pixel

A. Sapkota, B. Parks, W.J. Scheirer, and T. Boult, “FACE-GRAB: Face Recognition with General Region Assigned to

Binary Operator 66



1-vs-Set Machine vs. Typical SVMs

2-tailed paired t-test binary 1-vs-Set | binary linear | binary RBF | 1-class 1-vs-Set | 1-class linear | 1-class RBF
binary 1-vs-Set (HOG 88) ok S ®% *% ok
binary linear (HOG 88) — — ++ ++ ++
binary RBF (HOG 88) — ++ = + "
1-class 1-vs-Set (HOG 88) —_ — — ok —_
1-class linear (HOG 88) — — — — _
1-class RBF (HOG 88) — — — — ++

binary 1-vs-Set (HOG 212)

Heok

ek

Hek

Heok

1-class 1-vs-Set (HOG 212)

binary 1-vs-Set (LBP-like 88)

ek

ek

ek

1-class 1-vs-Set (LBP-like 88)

ek

binary 1-vs-Set (LBP-like 212)

&k

ek

ok

1-class 1-vs-Set (LBP-like 212)

ek

** 1-vs-Set Machine is statistically significant at p < 0.01

*  1-vs-Set Machine is statistically significant at p < 0.05

++ Baseline Machine is statistically significant at p < 0.01

— No statistical significance
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op 25 classes for the open universe
of 88 classes

==Binary SVM, linear kernel ===Binary 1-vs-Set Machine, linear kernel ===1-class SVM, linear kernel 1-class 1-vs-Set, linear kernel
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Accuracy

Top 25 classes for the open universe
of 88 classes

===Binary SVM, linear kernel ===Binary 1-vs-Set Machine, linear kernel 1-class SVM, linear kernel ===1-class 1-vs-Set, linear kernel
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F-measure as a function of
OPENNESS

—Binary 1-vs-Set Machine, linear kernel =—Binary SVM, linear kernel Binary SVM, RBF kernel
0.21

| [ X

0.2 J !
0.19 N

Q
2 0.18 T |
N
0.17
0.16
0.15 -
42% 52% 59% 63% 74% 82%

openness



Near and far plane pressures for

open universe of 88 classes

F-measure

F-measure

0.205

0.195

0.19

0.25

0.2

0.15

0.1

.....

3.5

The second plane
has an impact on
recognition
performance
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Biometric Verification

Does this incoming sample match
the one in our system?

Stored
Image

New
Sample

Answer: Verified or Not Verified

P. J. Phillips et al., Multiple Biometrics Grand Challenge
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Score Distributions

A
)
S | distribution of distribution of
> similarity scores for similarity scores for
£ different objects same objects
Impostors
(d)
false
non-match
| >,
! similarity !
< >i< >i

non-match !
decision threshold

T

Image Credit: A. Czajka

match
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Open Set Face Verification

Labeled Faces in the Wild

Genuine Pair

Impostor Pair

Gallery classes: 12 people with at least 50 images

Impostor classes: 82 other people in LFW
1,316 test images across all classes

Features: LBP-like and Gabor*®

N. Pinto, J. J. DiCarlo, and D. D. Cox, “How Far Can You Get with a Modern Face Recognition Test Set
Using Only Simple Features?” in IEEE CVPR, 2009. 74



Open set face verification

—Binary 1-vs-Set Machine, LBP-like —Binary SVM, LBP-like
Binary 1-vs-Set Machine, Gabor =—=Binary SVM, Gabor
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P-SVM Object Recognition

F-measure
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P-SVM Object Recognition

F-Measure
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Machine Learning Benchmark: LETTER
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Machine Learning Benchmark: LETTE
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Machine Learning Benchmark: LETTER

0.95
0.9
0.85
0.8
0.75

o
~

0.65

Accuracy
o
(@)

0.55
0.5
0.45
0.4
0.35

0.3 ‘\ I I | | T T 1
0% 2% 4% 6% 8% 10% 12% 14%

Openness
== P,-SVM == P -OSVM *% MAS Thresh.
“¥¢1-vs-Rest Mult. RBF Thresh. ““~Pairwise Mult. RBF Thresh. =*1-vs-Rest Mult. RBF
Pairwise Mult. RBF *® Logistic Regression Thresh. One-Class RBF



Alternate Priors: Freq. of Occurrence
of Letters in a Reference Corpus
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W-SVM Object Recognition
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Machine Learning Benchmark: L

F-Measure

— [ TER

0.95

0.9

0.85

0.8

0.75

0.7 w
0% 2%

=*=\W-SVM

*% MAS

=<%#=1-vs-All Mult. RBF Platt
Pairwise Mult. RBF

4% 6% 8%
Openness
‘B W-SVM 6, =.1
O NN+CAP
Pairwise Mult. RBF Platt
U-Logistic Regression

10% 12%

&-MAS+CAP
O NN
=+=1-vs-All-Mult. RBF

14%
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Fingerprint Spoof Detection

Incomplete knowledge of fabrication materials is
always present at training time

(c) Gelatine (d) Silgum (e) WoodGlue
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Materials and Quality

65

60

55

-

50

Quality

45

}________

40

35_ 1 1 1 1 1 |
Live EcoFlex Latex Gelatine WoodGlue Silgum




AL
a S

tomatic detection and adaptation of

00Ot detector to new spoof materials

------
e” “a

e . Binary W-SVM Spoof
Open Set Fingerprint .o s, Detector
h ./ Known or Unknown "«
Spoof Detection Material: Spoof  °
\ - Decision:
. Live / Spoof
Known Material: '

Live

Adapt Using Novel Spoof
Materials

. Novel K
\‘ Material K
‘e /' Multi-class W-SVM

Novel Material Detector

= j

Acquired Fingerprints

~ -
'''''''

Rattani et al. “Open Set Fingerprint Spoof Detection Across Novel Fabrication Materials, IEEE T-IFS 2015
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W-SVM Novel Material Detector

W-SVM Novel Material Detector

1-Class Decision Boundary

/ Binary Decision Boundary

Known Class:
¢ Live

Known Class:
Latex

Novel Materials in
Open Space

> 79
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W-SVM Spoof Detector

W-SVM Spoof Detector

1-Class Decision Boundary

o 7

Binary Decision Boundary

Known Positive
Class: Live

Known Negative
Material: Gelatine

Known Negative A By
Material: Latex 9 &/

- r) :
r? P ? r? Known and Unknown

Materials in Open Space
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Experimental assessment of W-SVM

Training: LivDet 2011 is partitioned into 1,000 live and 400
spoof images corresponding to two fabriaction materials

Testing: LivDet 2011 Is partitioned into two non-overlapping
partitions 7; and 7>

Each T; consists of 500 live
and 500 spoof images

200 images are from spoof
materials known at training
time; 300 are from novel
materials

h le.clarkson. r l/fingerprin
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Performance difference between
KNnown and novel materials

Biometrika
[ BSIF rLBP L LPQ Average

Training materials EERknown EERopel EERknown EERpovel EERyn0wn EER; ovel EERgnown EERovel

[%] [%] [%] [%] [%] [%] [%] [%]
Skin+Latex+EcoFlex 6.0 16.3 6.5 13.2 9.8 18.4 7.4 16.0
Skin+WoodGlue+Latex 15.0 15.0 10.0 13.8 14.4 16.8 13.1 15.2
Skin+Gelatine+Latex 11.0 16.5 12.0 11.2 8.9 17.7 10.6 15.1
Skin+Silgum+Latex 10.5 20.8 12.3 19.7 10.8 16.3 11.2 18.9
Skin+EcoFlex+Silgum 14.0 29.5 9.3 30.2 12.3 23.0 11.9 27.6
Skin+Gelatine+EcoFlex 13.3 233 9.7 15.2 14.0 224 12.3 20.3
Skin+Silgum+Gelatine 133 23.8 11.5 233 14.8 19.5 13.2 22.2
Skin+WoodGlue+Silgum 18.3 23.0 18.0 32.3 13.5 19.0 16.6 24.8
Skin+Gelatine+WoodGlue 16.8 17.2 12.3 11.0 15.8 17.3 15.0 15.2
Skin+WoodGlue+EcoFlex 16.3 17.2 21.7 26.7 17.4 17.3 18.5 20.4
Average EER + STDERROR: | 135+ 1.1 203+15 | 123+14 197+25 ] 132+£09 188+0.7 [ 129+1.0 19.6 £ 14
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Performance by feature set

Texture descriptors used

EER . = STDERROR [%]

Biometrika Italdata Digital Persona Sagem

Grey Level Co-occurence Matrix (GLCM) [16] | 44.6 £ 1.7 523 +£23 4377 £ 2.6 43.6 + 34
Binary Statistical Image Features (BSIF) [11] 332 £ 1.2 369 £ 1.3 342+ 2.1 38.5+ 2.7
Local Phase Quantization (LPQ) [13] 343 + 1.3 36.7 £ 1.4 449 + 5.3 403 + 34
Binary Gabor Patterns (BGP) [50] 30.3 £ 1.0 36.8 + 14 342 + 23 40.6 £ 2.2
Local Binary Patterns (LBP) [32] 32.5+ 2.0 373114 36.6+ 2.1 31.8+ 1.7
Local Binary Patterns (LBP) +

Binary Gabor Patterns (BGP) 285 £ 1.2 341+ 14 31.1 £ 2.3 325 £ 2.2
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Adapted spoof detector

. . . Tested on T: Tested on T-
Training materials [LBP £i BE LBP EIIJ BE
(not (adapted (not (adapted
adapted) using 771) adapted) using 71%)
[%] [%] [%] [%0]
Skin+Latex+EcoFlex 14.6 13.4 7.0 5.0
Skin+WoodGlue+Latex 12.8 9.6 9.8 6.0
Skin+Gelatine+Latex 13.8 13.4 10.2 7.8
Skin+Silgum+Latex 18.2 14.0 14.2 9.0
Skin+EcoFlex+Silgum 29.6 18.0 21.0 9.0
Skin+Gelatine+EcoFlex 15.2 14.2 10.4 7.2
Skin+Silgum+Gelatine 22.2 15.8 18.2 10.0
Skin+WoodGlue+Silgum 30.4 14.4 27.2 9.2
Skin+Gelatine+WoodGlue 12.2 10.8 10.0 8.2
Skin+WoodGlue+EcoFlex 19.8 12.8 12.2 6.0

Average EER + STDERROR : | 189 +£21 13.6+0.7 | 140+20 7.7 +£05




DET curves shift to the left after
adaptation

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Error Fake

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Error Live

Skin+Silgum+Latex Test T2 —Skin+Silgum+Latex Test T2 Adapted w/ T1
--- Skin+Silgum+Latex Test T1 —Skin+Silgum+Latex Test T1 Adapted w/ T2

Better
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-ow well could you do with these
features and the W-SVM?

Sensors

Tested on 75

Tested on T

(not (adapted (not (adapted
adapted) using 77) adapted) using 713)
[%] [%] [%] [%]
Biometrika
L LBP L LBP’ L LBP rLBP’
Average EER STDERROR : 189 +2.1 135+ 0.6 | 140 = 2.0 7.7 = 04
rLPQ ELPQ’ £LPQ ELPQ’
Average EER + STDERROR: 203 0.5 14.6 =05 | 12.5 = 0.7 9.0 = 0.5
[BSIF [ BSIF' [BSIF [ BSIF’
Average EER 4+ STDERROR: 215+ 13 154 +06 | 13.1 =09 7.0 = 04
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Open World Evaluation

Training phase

Parameter Learning Phase Incremental Learning Phase

Testing phase

Known Categories

Closed Set Testin
8 Unknown Categories

Open Set Testing

oL

T




Opening an Existing Algorithm:
Nearest Non-Outlier (NNO) Algorithm

A

Probability

-— ean o o
e — = =,

A. Bendale, T. Boult “Towards Open World Recognition” CVPR 2015



NCM — Metric Learning

NCM Classifier with Metric Learning

T Mensink, J Verbeek, F Perronin, G Csurka “Distance based Image Classification: Generalizing to New Classes at Near
Zero Cost” IEEE TPAMI 2013

M Ristin, M Guillaumin, J Gall, L Van Gool “Incremental Learning of NCM Forests for Large-Scale Image Classification”

CVPR 2014
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Opening an Existing Algorithm:
Nearest Non-Outlier (NNO) Algorithm

Standard gamma function Tis threshold for open world

In volume of m-D ball l Class mean for class i

/

AW WTul) (@)

be our measurable recognition function with f,(x) > 0 giving the
probability of being in class 1.

W = Linear Transformation (weight matrix from metric learning)



Training for Open World

Parameter Learning with initial set of categories

Estimation of 7for open set learning to balance open space risk

Optimize for Known vs Unknown Errors

Incrementally add new categories

NNO
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Learning Novel Concepts

AT

0.:.:°
° ©

Neares t Class Mean Classifier Nearest Non Outlier Algorithm

oy

Adding Novel Concepts to the System




Experiments

-

Datasets
e |LSVRC’10: 1.2M training images, 1000 classes
e [LSVRC’12: 1.2M training images, 1000 classes

N

/
Features

e Dense SIFT features, Quantized into 1000 Bag of Visual Words
e Publically available features
e LBP, HOG, Dense SIFT (for ILSVRC’12)

N

s
Algorithms

* Nearest Class Mean - ML Classifier (NCM) [Mensink etal PAMI 2013]
* Nearest Non-Outlier Algorithm (NNO) [This Paper]

e 1vSet [Scheirer etal PAMI 2013]

* Linear SVM [Liblinear, Fan etal JMLR 2008]

N




50 Initial Categories

Em NCM
25 e NNO
h i 1vSet
e SV M
20
Y Closed Set
© .
3 15 testing
(&)
<
o 10&
g 1 w
5 . ,‘
o J
# > 100 0
of .
Kno o0 200 c a\ego“es
400 n Testing
200~ 500 4 of UnknoW

Incrementally adding Increasing # of unknown categories
categories during training during testing i.e. increasing openness of
problem



200 Initial Categories

B NCM
- e NNO
3 i 1vSet
—¥—SVM
20 4
)
@ Closed Set
3 15 testing
<
a 10y
2

Incrementally adding Increasing # of unknown categories

categories during training 500 known + . # OT Unk :
500 unknown categories | GUring testing i.e. increasing openness of
problem 16




Opening Deep Networks

* Softmax always has a “winner” and re-weights
SCOres

* Networks are easily fooled with high confidence

* "Fooling” Images are obviously “open set” and
should be rejected

* Adversarial images are more problematic -
visually close but often far in label space

A. Bendale and T. Boult “Towards Open Set
Deep Networks” CVPR 2016 (Short oral)



Opening Deep Networks

Can hill climb to find fooling images*

Softmax Output
(0.992, baseball)

Softmax Output

AlexNet (0.998, baseball)

Softmax Output
> (0.98, Hamerhead)

* A. Nguyen, J. Yosinski, and J. Clune “Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images” CVPR 2015



Adversarial Manipulation of AlexNet

Noise (*100)

Hammerhead Image

Ly ’* AreS
Jumisseon

AlexNet

These are “visually near” but mislabeled

Softmax Output
(.32, ScubaDiver)

Adversarial images generated using: Goodfellow, Shelns and Szegedy “Explaining and harnessing adversarial

examples,” ICLR 2015



MAV and OpenMax

* Insight: A class is represented not just by its output,
but by its Mean Activation Layer (scores for all
classes)

 MAV Is just the average In penultimate layer
« “EVT distances” from MAV is a CAP model

* Given MAV, estimate probability of “unknown” via
EVT and OpenMax = Softmax type normalized
probability including probability of unknown




Open Set Deep Networks

Idealized class

Softmax Output Real: SM 0.94 F00|Ing SM 1.0, Openset: SM 0.15

(0.992, baseball)

Baseball
MODEL
Real Image

Fooling
OpenSet

I oo m1

Sharks Whales Dogs Fish Baseball




Step 1: Represent “known” as mean activation of a
class + EVI-model for “outlier”

Algorithm 1 EVT Meta-Recognition Calibration for Open Set
Deep Networks, with per class Weibull fit to ) largest distance to
mean activation vector. Returns libMR models p; which includes
parameters 7; for shifting the data as well as the Weibull shape and

scale parameters:k;, A;.

Require: FitHigh function from libMR

Require: Activation levels in the penultimate network
layer v(x) = v1(x)...vn(2)

Require: For each class j let S; ; = v;(z; ;) for each cor-
rectly classified training example z; ;.

cforj=1...Ndo
Compute mean AV, 1, = mean;(S; ;)

1
2:
3 EVTFitp,; = (j,%;, \;) = FitHigh(|| S; — ]|, n)
4
5

: end for
: Return means p; and libMR models p;




Step 2: Compute “open max” with explicit probably of

unknown

Algorithm 2 OpenMax probability estimation with rejection of
unknown or uncertain inputs.

Require: Activation vector for v(x) = v (z),...,vn(2)
Require: means x; and libMR models p; = (73, Ai, ;)
Require: «, the numer of “top” classes to revise

1: Let s(z) = argsort(v;(z)); Letw; =1

2: fori=1,...,ado

( lz—Tg(s) ) O
— a—1 - ’\s 1
ws(i)(x) =1—-%"e (4)

3:
4: end for
5: Revise activation vector (x) = v(x) o w(x)
6: Define 0g(z) = ), vi(z)(1 — wi(x)).
7:
Ply =) = o @
y = jlx) = -
Zﬁio e¥i(x)

8: Let y* = argmax; P(y = j|x)
9: Reject input if y* == 0or P(y = y*|x) < €
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Hammerhead Shark

Real Image |

Fooling |
OpenSet
Great White Shark

Real Image|

OpenSet

Scuba Diver
MODEL

Real Image

Fooling

OpenSet
Adversarial Scuba Diver (from Hammerhead)

oo mo1

Whales Dogs Fish Baseball

Adversarial Scuba Diver
Real: SM 0.57, Fooling: SM Openset: SM SM 0.32 Scuba Diver
OM 0.58 0.98, OM 0.00 0.25, OM 0.10 OM 0.49 Unknown




Open Set Deep Networks

Text
1 < 2FE
Real: SM 0.94 Fooling: SM 1.0,
OM0.94 OM 0.00
Baseball

MODEL
Real Image
Fooling
OpenSet

! T

Sharks Whales Dogs

i

Openset: 0.15,
OM: 0.17

1

Fish Baseball



Wrapping up...



Further Reading

e F Costa, E. Silva, M. Eckmann, W.J. Scheirer, and A. Rocha, “Open Set Source
Camera Attribution and Device Linking,” Pattern Recognition Letters, 2014,

o W.J. Scheirer, A. Rocha, A. Sapkota, and T. Boult, “Towards Open Set Recognition,”
IEEE T-PAMI, 35(7) July 2013.

e M.J. Wilber, W.J. Scheirer, P. Leitner, B. Heflin, J. Zott, D. Reinke, D. Delaney, T.E.
Boult, “Animal Recognition in the Mojave Desert: Vision Tools for Field Biologists,”
IEEE WACYV, 2013.

e B. Heflin, W.J. Scheirer, and T.E. Boult, “Detecting and Classifying Scars, Marks,
and Tattoos Found in the Wild,” IEEE BTAS, 2012.

e \W.J. Scheirer, A. Rocha, R. Micheals, and T.E. Boult, “Meta-Recognition: The Theory
and Practice of Recognition Score Analysis,” IEEE T-PAMI, 33(8), 2011.
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Further Reading

e A. Rattani, W.J. Scheirer, and A. Ross, “Open Set Fingerprint Spoof Detection
Across Novel Fabrication Materials,” IEEE T-IFS, 10(11) Nov. 2015.

e \W.J. Scheirer, L.P. Jain, and T.E. Boult, “Probability Models for Open Set
Recognition,” IEEE T-PAMI, 36(11), Nov. 2014.

e | P Jain, W.J. Scheirer, and T.E. Boult, “Multi-class Open Set Recognition Using
Probability of Inclusion,” ECCV, Sept. 2014.
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Code

1-vs-Set Machine, P;-SVM, and W-SVM on GitHub:
https://github.com/ljain2/libsvm-openset

Data sets:
http://www.metarecognition.com/openset/
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