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Abstract

Generating statistically significant datasets for face
matching system evaluation is a laborious and expensive
process. Capturing variables such as atmospheric turbu-
lence and other weather conditions especially with respect
to face recognition at a distance exacerbate the problem fur-
ther. It is even more difficult to work on system issues for
long-range systems that impact the collection phase such
as automated control loops for gain, focus or zoom, as they
directly impact the collected data. And since system perfor-
mance is confounded with variations in subject selection,
pose, lighting, expression, etc., formal evaluation of sec-
ond order effects are difficult without extremely large col-
lections.

This paper describes a taxonomy of face-models for con-
trolled experimentation that overcome these challenges. We
show that a gap has existed in experimental design and how
a range of model-based approaches can partially fill that
gap. Methods for generating 3D models that can be easily
manipulated to create variations in pose are presented. Ad-
ditionally described are techniques for validating and cap-
turing model-based data for use in developing and testing
outdoor long-range face matching systems.

1. Introduction

Biometric evaluations must contend with significant un-
certainty and variations in their subjects, resulting in the
need to collect large datasets and apply statistical compar-
isons to draw conclusions about system performance. The
time/cost/accuracy tradeoff in experimental design is non-
trivial. The core of good science includes experimental de-
signs that allow one to test theories and evaluate algorithms.
Most areas of hard science design “controlled experiments”,
where almost everything is held constant and one or a few
items are varied, allowing one to better interpret the results.
In the words of Nobel Laureate Lord Rutherford, “[i]f your
experiment needs statistics, you ought to have done a bet-
ter experiment.” (quoted in [2]). While the advances in
quantum mechanics show even physics needs statistics, the

issues about designing controlled experiments still remain
true. Statistics are needed to account for the inherent uncer-
tainty that will exist in all measurements, but the greater the
control over unintended variations during an experiment,
the greater the power (in a statistical sense) of the result-
ing data. Quite literally, control means power.

A secondary, often unstated, goal of biometric evalua-
tions is to suggest performance in operational use. While
we can do collections in the lab, increasing our control over
variables, performing large scale collections under many
conditions is difficult. This is exacerbated by the fact that
most biometric systems are strongly impacted by collection,
user behaviors and environmental conditions. Thus, for bio-
metrics, experimental control often reduces how it general-
izes and applies to real problems.

The relationships between these dimensions and experi-
mental setups are shown in Figure 1, which depicts the cor-
relation of results to operational scenarios on the horizontal
axis, and degree of experimental/scientific control that is
exercised on the vertical axis. The colors show estimates of
the risks of drawing erroneous conclusions when trying to
use that data as a predictor for other settings, with red being
high risk, orange medium, yellow moderate and green low.

An ideal experiment would be shown in the upper right
of Figure 1 and would provide both high levels of scientific
control and high levels of operational relevance. For bio-
metrics, this ideal is unrealizable because the environments
and subjects cannot always be controlled and because envi-
ronments and subject change – sometimes intentionally. An
important question for our field becomes: what experimen-
tal designs can be realized, are there any gaps, and what are
the cost vs. performance tradeoffs for those designs?

The classic biometrics experimental processes are de-
picted via exemplars along the bottom “row” of Figure 1,
showing increasing generalization to operational use. Small
lab experiments have some control but little operational rel-
evance. They are commonplace for testing but are rarely
considered sufficient for publication as it is too easy for
them to produce significantly misleading results. Strongly
controlled datasets, such as PIE [18], provide increased con-
trol and study enough parameters of interest to improve



Figure 1. The graph above shows the relationships between dif-
ferent types of datasets: real vs. synthetic. We show that the semi-
synthetic approach most closely captures qualities present in the
ideal experiment.

their overall generalization. While PIE is small in the num-
ber of subjects, its strong experimental design allows for
pose to be decoupled from illumination and expression,
which has made it extremely popular for evaluation (accu-
mulating nearly 800 citations).

Challenge problem datasets such as FERET and more
recently FRGC/FRVT [13] have provided the community
with ground truthed data sets with much larger numbers
of images in a broader range of conditions, but with much
lower control over the collections. They too have become
critical elements of evaluation for face matching algorithms
and are widely used. Testing closer to operational use,
though less widely shared in publication, is still important.
Pilot testing, or in situ experimentation, provides more con-
trol and oversight with more data but often is not conducted
with the final system, and the behaviors of pilot subjects
are often subject to selection bias and artificial actions. The
most relevant testing, however, for exactly one setting is in
situ validation, which generally has only small samples of
ground truth and little scientific control, but has high oper-
ational relevance. It may be worth noting that except for
in situ validation, the remaining techniques all use human
“models” whose activities are often controlled and behav-
iors very cooperative. This can be very important when
evaluating the realism related to the actual operational sce-
nario, especially if real systems might have adversarial sub-
jects trying to defeat the system.

Looking at just the bottom row of Figure 1, it is appar-
ent there is a gap in experimental ability – a gap we believe
can be filled with model-based experiments. We briefly in-
troduce our taxonomy of model-based evaluations, and then
briefly review previous work in related areas. Model-based
classes are shown in Figure 1, along the top “row”, and rep-
resent, from left to right, the least operationally relevant to
the most operationally relevant.

Unverified synthetic models At the top-left of the figure,
which is below zero on our scale of operational rele-
vance, are pure synthetic models. These models may
be artist rendered or simple mathematical models. The
models may look fine visually but have no underlying
physical or statistical basis and no validation.

Physics-based models are based on structure and mate-
rials combined with properties formally modeled in
physics. They have have been used for muscle at-
tachments for facial movement and the texture within
irises. In a different element of experimental controls,
physics models are commonly used for modeling syn-
thetic imaging systems including sensor or lens mod-
eling. Being derived from physics models improves
the relevance, but they are only as good as their under-
lying assumptions, which are often simplified to make
the modeling tractable.

Statistical models use estimates of parameters to supple-
ment or enhance synthetic models or physical-models.
Because they are tied to measurements from real bio-
metric data they are somewhat valid and tend to have
greater predictive power for operational relevance for
the the population of the data.

Guided models are individual models based on individ-
ual people. There is no attempt to capture proper-
ties of large groups or actual physics across models.
For guided models, a new model is created for each
person, with populations addressed by building many
such models. For faces, guided models are composed
of 3D structure models and skin textures and hence
the models capture many artifacts that are not formally
parameterized. Accuracy in model construction will
likely be important. The 3D face models can be com-
bined with (physics-based) graphics rendering to gen-
erate samples under different conditions.

Semi-synthetic models use measured data, such as 2D im-
ages or 3D facial scans as the model. But rather
than modeling the imaging system, they are incorpo-
rated into a real system for evaluations. We call these
semi-synthetic since the underlying data is no longer
really a synthetic model, but a re-rendering of mea-
sured data instead. Like guided models, semi-synthetic
models are derived from individual biometric data and
hence can capture important biometric properties that
are never explicitly modeled, e.g. distributions of skin
textures, facial geometry, and facial hair.

An important aspect of any type of synthetic model is
how it is validated. Previous work has looked at the gross
shape of match and non-match distributions, but biomet-
ric system performance lives in the tails of the distribu-
tions. Physics-based models and statistical models would
need large scale experiments to validate their relationship to
any actual biometric distribution. A more meaningful and



natural way to validate biometric models is to “replicate
experiments” conducted with real biometric data. This is
straightforward for guided and semi-synthetic models and
is one of their significant advantages over other types of
synthetic models.

We are, of course, not the first to consider the use of
synthetic biometric data for evaluation. Various surveys
on synthetic biometric data for evaluation can be found in
[11, 10]. These discuss issues related to physics-based bio-
metrics modeling, but they do not seriously discuss issues
that arise in using these models for system evaluation, nor
how to validate the models

A common rationale provided for the use of synthetic
data for evaluation is that it allows for the generation of
larger data sets. However, there are no large public syn-
thetic data sets for face and little published use of it in such
testing. Rather, the most common use of models is for im-
proving recognition systems: using 3D models for missing
data (pose correction for face models [7]), 2D-3D model
reconstruction followed by 3D model matching [19], and
image face-morphing between views or individuals). These
are important works and almost every one uses good face
modeling; however, our focus herein is the use of models
for biometric system evaluation, which previous work does
not address.

A second critical difference between our work and past
work is our focus on how the models help control unwanted
variations in biometric system evaluations. Prior work that
used synthetic data for control did not directly validate mod-
els, but rather used synthetic models for testing with con-
trol, and then included a small amount of testing with real
data for further validation. For example, [1] studied syn-
thetic hand models from many camera views, but only used
real data for limited testing. In long-range face evaluation,
no such mixture of controllable synthetic and real data has
been studied – probably because quality faces are more dif-
ficult to properly simulate than synthetic gestures.

Taking this problem to more difficult conditions, there
is a growing interest in long-range system evaluation. Yao
et al. in [21] attempt to create a data set for long-range
recognition. One problem with this data set is fairly ob-
vious – if one wants to test another lens, another camera,
another focus-control algorithm, another weather condition,
or any other system or environmental parameter other than
the matching algorithm, a new collection would be required.
A more subtle issue is that, because the data set still contains
variables that other studies such as [4, 5, 3] have shown
to significantly impact recognition in controlled environ-
ments, the conclusions that can be reached are limited be-
cause there is insufficient data to reject any hypothesis that
does not have a very large effect.

The question at hand is how one can control the same
variables studied in [4, 5, 3] in order to gain the power of

having a controlled experiment again, including a method-
ology that will work at long-range and possess significant
data realism.

The rest of this paper is organized as follows. In Sec-
tion 2, we present details on previous attempts at semi-
synthetic modeling, which were developed for long-range
biometric evaluation during the DARPA HID program circa
2000. These models have significant advantages for face
system evaluation. In Section 3 we present our improve-
ments on this concept using 3D guided models for evalu-
ation. In both cases we describe the data and models, the
system validation process, and some results. Our focus is
on the use of models and the process, not post-processing
algorithms. Section 4 discusses data sets captured using our
methodology. Experiments and results from various recog-
nition algorithms on data captured outdoors are in Section 5.
Finally, we conclude and discuss future work in Section 6.

2. Previous Attempts to Solve The Long-range

Face Evaluation Problem

When collecting long-range face data, several problems ex-
ist including weather and atmospheric effects (distortion
cased by thermal aberrations in the atmosphere). The orig-
inal concept of photoheads was created in [9, 8]. These are
semi-synthetic experiments developed during the DARPA
HID1 effort. For these experiments, a long-term setup with
2 cameras at distances of 94ft and 182ft is used for the cap-
ture system. The display system consists of a waterproof
800x600 LCD designed for marine use to display a subset
of the FERET [14] data set. This controlled setup allows
for data capture in various weather and atmospheric condi-
tions. The semi-synthetic use of images controls for local
pose, expression and facial illumination over a long period
of time. Second, since in depth analysis has been conducted
on FERET [14], results can be compared across algorithms.

As described in [8], initial validation was was performed
at 15ft and replication of experiments was performed using
the CSU Face Identification Evaluation System [6]. The
most controlled long-range experiments followed a proto-
col called “self-matching at a distance”, where the same
image is used for probe (sample submitted to the system for
matching) and gallery (enrollment data). This test allows
for a clear indication of variables causing any degradation
and showed that, at that time, commercial recognition al-
gorithms were not sufficient for even the short distance to
the near camera. These experiments led to the development
of algorithms to improve general matching performance in
[16]. Multiple observations that were initially non-intuitive,
including performance variations at different times of day
and weather effects (for example, light rain was better than
sunny) were studied in detail.

1http://www.itl.nist.gov/div898/itperf/humanid.htm



Figure 2. A collection of self matching data over a variety of de-
grees of light snow precipitation from camera C0 at about 100ft
and C1 at about 200ft. Surprisingly, C1 is often better.

Figure 2 is a plot of four time intervals during snow con-
ditions from both the near and far cameras. Normally the
close camera outperforms the far camera for this data; how-
ever, in this plot, the far camera (labeled C1) consistently
outperforms the near camera’s (labeled C0) match scores
while being nearly twice as far away. Can you think of
why?2 The point here is not to claim that these are novel
findings. Rather, we are showing that a unique analysis is
only possible with the semi-synthetic data approach of [8].

Another surprising conclusion was that morning was bet-
ter than midday for recognition performance. The cause
was thermal atmospherics, commonly referred to as the
“mirage effect”. These effects include atmospheric blur
and geometric distortions. At long distances these effects
can potentially distort the precise features of a face and
impact matching performance. To this end, effective de-
blurring techniques have gained significant interest. Specif-
ically [17] looks at blur caused by atmospherics. Synthetic
blur techniques can use models of the point spread function
(PSF) of atmospheric blur [12], but that is a type of pure
synthetic modeling, as the blur models are not physically or
statistically validated.

Current face data sets do not provide data relevant to
these problems. Clearly there is a need within the com-
munity to do facial recognition research on long-range data
sets. We are building such data sets at 3x the distance of
the semi-synthetic data in [8] (distances between 100m and

2The cause is a larger depth of field for the near camera, causing more
flakes to be viable obscurities rather than be just blurred out.

200m). These data sets will allow researchers to further
analyze the complex problems that atmospheric blur, geo-
metric distortions, adverse weather conditions, and distance
pose to current face matching algorithms. The paradigm us-
ing guided and semi-synthetic data could be used by others
to design their own model-based experiments.

3. Guided-Synthetic Photoheads

Our extension of the photohead concept moves from 2D
static space to 3D dynamic space. Re-capturing 2D im-
ages, while valid, has limitations. Factors such as pose and
expression are limited to the pictures available within the
dataset. 3D models of an entire human head are far more
flexible. Easily scripted animation for pose and motion give
repeatable results each time and add another dimension of
measurement. Additionally, lighting changes within the im-
age are repeatable for every head giving uniformity to each
image as well. Clearly, by generating accurate 3D repre-
sentations of human faces we can prove our concept. The
following is an overview of this new photohead system.

3.1. Display Engine

For displaying images, many programs exist with the func-
tionality to display images at timed intervals. While there
are programs available to render 3D objects, none seem to
exist that can display multiple models for specified lengths
of time. In light of this we designed a custom 3D rendering
program, which we implemented using the OpenGL, GLUT
and DevIL libraries. Multiple 3D file formats were included
for support including Wavefront Object and VRML. In ad-
dition to displaying a series of 3D objects, each for a speci-
fied amount of time, we allowed for script-able size scaling,
rotation, and movement along the X ,Y , and Z axes. Also,
as seen in Figure 3, we incorporate a bar code into the scene,
which is used to identify a captured image with an offline
decoding program written using the OpenCV library. Addi-
tionally, the bar codes display numbers for manual human
decoding, if necessary.

3.2. Guided Model Generation

To generate our guided models, we used the commercially
available software package Forensica Profiler from Animet-
rics, Inc.3 It provides a robust photo mapping system con-
sisting of major and minor facial key-points. A frontal im-
age as well as left and right profile images are used to create
the 3D model of the face. Following the blueprint used by
[8] we modeled the well known dataset PIE [18]. The right
profile and frontal images for each of the 68 subjects are
drawn from the same cameras in the lights subset of PIE.
An example of a generated model and its source pictures
can be found in Figure 3.

3http://www.animetrics.com/products/Forensica.php



Figure 3. The first row images are examples of the “real data”
used to generate the semi-synthetic models derived from the PIE
database. The bottom contains a screen shot of a FaceGen model
(left), and a screen shot of a Forensica model (right). The bar
code in the Forensica image is used as a labeling scheme to au-
tomatically identify each person after each collection. While the
hair/head region may look unrealistic, only face regions are used
for recognition.

3.3. Model Generation Challenges

Model generation went through multiple iterations before
we arrived at our current solution. The initial attempt was
with 3D data contained in the FRGC [13] dataset. The com-
mercial software product FaceGen, produced by Singular
Inversions4, was used as our second attempt. An example
model generated by the FaceGen software is shown in Fig-
ure 3 as well as a normalized version in Figure 4. When
attempting to test both FaceGen and FRGC 3D models at
close capture distance we blamed observed failure mainly
on the display setup. We neglected to question two impor-
tant assumptions: first, that our display program was render-
ing the models accurately; and second, that the models were
really accurate representations of their human counterparts.
We found, after analyzing the two assumptions individu-
ally, that both were incorrect. After making adjustments to
our display program to increase its realism capabilities, we
tested screen shots of models from FRGC and FaceGen in
recognition tests. Both obtained rank 1 recognition rates be-
low 50% for a self-matching protocol where close to 100%
recognition was expected. Thus, a better set of models was
needed, leading us to the superior Forensica software.

3.4. Model Validation

Although the Forensica models look to the human eye like
the person in the source imagery, we recognize that this sub-
jective metric is not enough. To further verify our models,
we conducted recognition tests using two different recogni-
tion cores, which are described briefly in Section 5.

4http://www.facegen.com/

Figure 4. Screenshots from the 3D Photohead display program.
Both images are models of the same person. The left image was
created using FaceGen, while the the right image was created us-
ing Forensica. The full screenshots for these images can be seen in
Figure 3. Both are preprocessed with SQI lighting normalization.

Figure 5. Animetrics model from Figure 4 re-imaged and prepro-
cessed with SQI lighting normalization The left image is indoors
at 81M, while the right image is outdoors at 214M.

Figure 6. Gallery used to to run experiments with the same pre-
processed SQI lighting normalization. These are three normalized
PIE images, not models! Compare to Figures 4–5.

For simulated recognition, screenshots of the head model
facing forward from the photohead display program were
used as probes. The gallery, as seen in Figure 6, used 3 im-
ages: the one image from the PIE gallery set and two images
from the PIE lights subset not used to generate the mode.
We conducted this simulation to ensure that the screenshot
was not simply matching back to the same picture due to
similarities within the texture of the 3D model. With a per-
fect rank 1 recognition rate using a V1-like recognition al-
gorithm [15], the models were shown to be accurate repre-
sentations of the real people.

For our validation, we sought to minimize and eliminate
as many variables as possible. We moved from a simulation
to a controlled experiment that tested both the capture sys-
tem and display system indoors at 80m. By conducting the
first set of experiments indoors, lighting and atmospherics
were minimized. Additionally, we were also able to scale
the synthetic data to simulate longer and shorter distances,
which eliminated other possible optic distortions. In this
case recognition rank 1 results from the V1-like recogni-
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Capture Side
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Figure 7. The diagram above shows a high level overview of the
photohead system. The capture system consists of a Canon 7D
camera fitted on a Sigma 800mm lens with a Canon 2x adaptor,
which downloads data to a laptop. The display system consists of
a BENQ SP820 projector and custom display apparatus.

tion algorithm were still 100%. Thus, our 3D models and
display apparatus demonstrate that we have accurate repre-
sentations of the PIE dataset [18].

3.5. Display and Capture Setup

Another challenge that we had to overcome was finding an
appropriate imaging medium to capture all real world fac-
tors present in long distance face recognition. The main ob-
stacle in this challenge was finding the correct display con-
figuration. Most commercially available displays are not
bright enough to compensate for the additional light noise
from the sun. With a goal of 200m for captures, almost
4x the max distance camera in [8], it became clear that a
bigger display and brighter projection device was needed to
accurately display and capture models outdoors. To provide
flexibility, a portable design was implemented. The entire
apparatus from display to capture can be set up in less than
15 minutes by two people.

Figures 7 & 8 depict our current setup, which evolved
over a year’s worth of experiments with different outdoor
displays. Mounted at the front of the display box is a BENQ
SP820 projector. It is an extremely bright projector rated
at 4000 ANSI Lumens. It is capable of a 1400x1050 res-
olution, but to achieve maximum vertical refresh rates of
85Hz, it must be used at 1024x768. Even with exceptional
brightness it cannot, on its own, overpower the natural light
outside. Standing only a few feet away from the screen, the
human eye still had trouble viewing the projected image. To
combat this, a sun blind was built around the screen to block
out external light.

On the capture side, the camera used for data acquisition
is a Canon EOS 7D. It is fitted to a Canon 2X adapter and
a Sigma 800mm F5.6 EX APO DG HSM lens. The 7D is
hooked up to a laptop running custom capture software built
using the Canon SDK. Using the integrated face finder in
the camera, we locate a face on the display apparatus each
time a new one appears and capture an image.

4. Guided-Synthetic Data Sets

We created two data sets from guided-synthetic models: a
data set derived from PIE and a data set derived from images

Figure 8. Captured frame example, taken from 214m.

specifically created for this work. Below is a description of
the three data sets produced from our photohead methodol-
ogy. Details of how to obtain these data sets will be included
in a final revision of this paper.

With our sets come several different types of data. The
format for the captured images is a Canon proprietary raw
format called CR2. They have also been converted to PNG
formats for experimentation.The format for the 3D models
is Wavefront object file format. The textures for the models
are in PNG format. Of course, with the 3D models, any
pose variation desired can easily be supported. The poses
which we have included in our data are identical to those
in the original PIE data set [18]. Each data set consists of
a probe set and a gallery set. We ensured that the images
used to create the semi-synthetic data in the probe set were
different from the images in the gallery set.

To prevent damage to the equipment we needed fair
weather conditions to collect data. This had two effects on
our data set collections. First, the collections occurred in
very bright conditions, which showed that our methodology
would work in a worst case lighting scenario. Second, it
limited when we could capture. For these reasons the 3D
data sets do not have a large a range of data collected over
various times of day and weather conditions as is present in
[8]. The data sets mainly consist of sunny to partly cloudy
conditions captured generally between 11am-4pm.

The internal 3D data was also limited to the same factors
as the 3D version of PIE in terms of capture time. The in-
ternal set was modeled in same fashion as PIE. Frontal and
profile images of 10 individuals were taken under similar
lighting conditions with a basic handheld camera. Due to
the small assortment of images we recognize that this data
set’s size may not prove very useful for large scale analysis.
However, this dataset is not encumbered by any licensing
restrictions, in contrast to the PIE-3D dataset and FERET
datasets in Section 2, allowing us to release it in the future
for analysis by the community.

PIE 3D has 68 probe images for each re-imaged or screen
shot collection. Screen shots are in PNG format. Re-imaged



captures are in CR2 and PNG format. The internal 3D probe
sets consist of 10 images each. Screen shots are also in PNG
format and the re-image captures are in the same formats as
the PIE 3D probes.

The original PIE gallery as well as 2 images from the
lights subset of PIE that were not used to generate the 3D
models were used in our gallery. They are in their original
format of PPM. The images used for the internal gallery are
in high quality JPEG format. These images were not used
to generate any models, but are taken by the same hand-held
camera and in similar light settings as the images that were
used for modeling.

5. Experiments

With our experiments, we show that using quality guided-
synthetic data is a feasible evaluation technique for face
recognition algorithm development. To this end we used
the PIE data set as a foundation to prototype and lay the
groundwork for future large-scale data set generation and
captures in the same way that captures were conducted in
[8]. We needed to address several issues in the initial cap-
tures. A good deal of mobility was needed in the display
and capture systems because of the location we were using
to validate our tests. This mobility, as well as factors de-
tailed in Section 4, limited the size and conditions in which
the data was collected.

With a future goal of long term captures, software was
developed to collect an image when a face is detected. How-
ever, for these experiments a human conducted the capture
of the data and focus of the lens. Manually capturing the
data did afford us a few advantages that a full automated
capture would not be able to do. We were able to precisely
focus the lens to ensure the best image possible, allowing
a degree of compensation for atmospheric and distance ef-
fects.

Section 3.5 describes the capture and display systems. In
this section we describe the validation process on the data
we collected. Our goal in validating the data is twofold.
First, we intended to develop a scientific system by which
our results would be repeatable on a large scale across var-
ious data sets. Second, we wanted to show that using a
guided-synthetically generated probe captured in a real life
scenario would generate the same recognition results as
would a real life probe.

We ran a series of tests on the collected data through
the use of two different recognition cores. One core, de-
scribed in detail in [15] as “V1-like”, constructs a feature
vector for each input image composed of Gabor responses
and leverages the power of a multiclass Support Vector Ma-
chine for its underlying classification model. In order to
utilize this technique, several preprocessing steps were re-
quired, as the recognition core does not include any face
detection or lighting normalization. Thus, we used the CSU

Data Iso Distance V1 Comm.
FRGC Screen Shots N/A N/A 42.11 -
FaceGenScreenShots N/A N/A 47.76 -
AnimetricsScreenShots N/A N/A 100 -
PIE-3D-20100210B 500 81M 100 -
PIE-3D-20100224A 125 214M 58.82 100
PIE-3D-20100224B 125 214M 45.59 100
PIE-3D-20100224C 250 214M 81.82 100
PIE-3D-20100224D 400 214M 79.1 100
Securics-1-02242010 125 214M 20 100
Securics-2-02242010 250 214M 33.33 100
Securics-3-02242010 400 214M 30 100

Table 1. 3D recognition percentages. The commercial algorithm
was not available for use with FRGC and FaceGen. Given the per-
fect results on AnimetricsScreenShots and PIE-3D-20100210B,
we felt there was no reason to run additional algorithms. Screen-
shots were used for a self-matching test to verify the models, with
expected results of 100%. This was to give us a baseline for dis-
tance captures. If for instance we used the FaceGen screenshots for
distance captures it would have been un-realistic to expect recog-
nition rates higher than 47%. Our main goal was not to create
a hard dataset to break algorithms, but rather to validate that the
photohead methodology worked.

Face Identification Evaluation System [6] to perform geo-
metric normalization based on ground truth that we pro-
vided, coupled with Self Quotient Image (SQI) lighting nor-
malization as described in [20]. These procedures were
performed on both gallery and probe sets prior to running
recognition core.

In order to increase the accuracy of the SVM’s conver-
gence, the gallery for both the PIE-3D and internal datasets
comprised at least three images per subject, of which ex-
actly three were chosen for the experiments based on con-
sistency of illumination and pose to ensure a well-behaved
gallery. None of the gallery images overlapped with those
used to generate the models to eliminate the chance that
the recognition core over trained on non-face conditions of
the particular image used (lighting, reflections, background,
etc.). For the PIE-3D set, the official PIE gallery, along with
images 27 16 and 27 20 from the ‘lights’ subset of PIE,
were chosen to serve as gallery. For the internal data set,
several photographs were taken both inside and outside to
fit our pose and illumination criteria.

The second recognition core used is a leading commer-
cial face recognition system. This system does include face
detection and its own normalization techniques, so none of
the preprocessing described above was necessary. The re-
sults for both recognition cores are shown in Table 1. The
V1-like recognition core achieves rank-1 recognition of up
to 80%, adequately demonstrating its stability and proving
that it is a worthy candidate for improvements specific to
long-distance face recognition problems, while the com-
mercial recognition system tested establishes a benchmark
with a consistent 100% rank-1 recognition score.



6. Conclusions and Future Work

Through various steps of validation, we have proven that
semi-synthetic data is a viable alternative to data collected
from real people. We have recognized the influential char-
acteristics of both semi-synthetic and real data. These char-
acteristics are: quality input data, robust modeling software,
a dynamic display system, and accurate capture system.
These characteristics have led to the development of a ro-
bust modeling system allowing us innumerable configura-
tions with one real life set of data. The size of our dataset
is only limited by the number of models we are able to pro-
duce. In addition to isolating these characteristics we ex-
panded the photohead methodology into a 3D embodiment.

Future work will include studying pose and motion in
a controlled and repeatable setting using guided-synthetic
models. Specifically, since our photohead program has the
ability to vary pose and lighting, we would like to create
a guided synthetic version of PIE [18], as screenshots and
eventually at distance. This would further validate guided-
synthetic models as an accurate alternative to real people.
Additionally, we would like to conduct long term tests in
various weather conditions using guided-synthetic models,
as has previously been done with semi-synthetic data [8].
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