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1 Introduction
Self-driving vehicles, also referred to as autonomous vehicles (AVs) or
driverless cars, have become in a period of less than 10 years one of the
biggest technological arms races in the world, with tens of billions of dol-
lars poured into companies and start ups [1]. The crown jewel in the race
is the on road, consumer driverless car: whether owned by individuals or
part of a centralized ride-sharing fleet, this is the area where the majority
of investment has occurred. Yet autonomous vehicles have been around
for much longer in other fields such as mining, domains which share some
but not all of the same technical challenges faced by on-road autonomous
vehicles.

In this article, we provide an overview of the key technical challenges
and solutions for both on- and o�f-road autonomous vehicles, with a focus
on one of the key unsolved challenges - interaction with vulnerable road
users.

2 Key Technical Competencies - Hardware
A typical autonomous vehicle contains a number of key components: the
physical platform itself, and a suite of sensing and onboard computational
hardware.

2.1 Platform
The type of autonomous vehicle platform a�fects the viability of di�ferent
technological solutions to autonomy. Larger vehicles are typically heavier
and harder to stop, and more damaging when they hit something, but can
carry more onboard sensing and compute. Energy storage also generally
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scales favourably with vehicle size, an important consideration which can
enable better up-time percentages and utilization of more power hungry
compute.

2.2 Sensor Suites

Figure 1: A typical sensor suite on top of a car, with multiple cameras and
LIDAR sensors. Photo from QUT.

Autonomous vehicle platforms have access to a range of sensing tech-
nologies. LIDAR and laser-based range sensors provide accurate long
distance "range to object" information, and can also use reflectance in-
formation to detect lane markings. In adverse weather such as rain or
smoke, their capabilities can be significantly degraded.

Modern camera technology provides very high resolution imagery
of the environment, with good dynamic range (revealing detail both in
bright and dark areas of an image simultaneously) and high frame rates.
The information present in a camera image is much richer than that
provided by any other sensing modality, provided it can be successfully
extracted: the widely quoted proof of concept here being that humans
can drive very well with primarily visual sensing alone. Cameras are o�ten
cheaper and require less power than LIDAR, but are sensitive to changes
in environmental appearance caused by factors like day-night cycles.

Radar’s primary purpose in most current autonomous vehicle appli-
cations is collision avoidance: although it does not have good acuity and
hence struggles to distinguish small objects, it is relatively resilient to
environmental conditions such as adverse weather, and can see through
smoke and fog quite well.

Finally, sensors like Global Positioning System (GPS) receivers pro-
vide positioning information (which can be disrupted by tunnels or tall
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Figure 2: What an autonomous car sees: a range of camera views (top)
and range scans (bottom). Photo from QUT.

buildings), while internal sensors provide information such as linear ac-
celeration, rotational rate, steering angle and wheel speed.

2.3 Computational Hardware
Compute hardware provides the processing power to perform all the on-
board autonomy-related tasks like scene understanding, navigation and
high level control. To maximize electric vehicle range, recent hardware
trends have focused on power usage per compute unit. Nvidia is a good
example of a key player in this space, with power e�ficient, highly capable
systems like its Jetson AGX Xavier.

O�f board compute still has a useful role to play in autonomous vehicle
applications, for example in the consolidation and merging of the massive
amounts of data uploaded by thousands of cars in a city on a daily basis.

3 Key Technical Competencies - So�tware
The so�tware operating on autonomous vehicles performs a number of key
technical competencies including localization, planning, decision-making
and scene understanding.

4 Mapping and Localization
Mapping and localization is a key pillar of autonomous vehicle operation.
In brief, there are several subtypes of localization which play di�ferent
roles in enabling autonomy on a vehicle.

Simultaneous Localization And Mapping (SLAM) has long been a ma-
jor research field in robotics: how does a robot move through an envi-
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ronment, building up a map of that environment, whilst simultaneously

localizing itself within that ever changing map.
Approximate localization – what you get on your phone’s GPS – is

typically used for overall route planning, and is obtained from GPS or from
onboard localization systems. "Automation-enabling" higher precision
localization is typically provided by onboard localization within existing
maps of the environment, or in the case of some autonomous mining
vehicles high accuracy GPS.

Relative localization is also important: for example, knowing that the
vehicle is currently located 0.73 metres from the edge of the road. Accurate
relative positioning (and velocities and accelerations) with respect to mov-
ing objects such as an oncoming car is critical for safe vehicle planning
and control.

Figure 3: All errors are not created equal: for second to second control in a
mining tunnel for example, minimizing lateral error is more important
than downtrack (along the length of the tunnel) error, since the immediate
risk is hitting the wall. Source 123rf.com / 0mela / tele52.

4.1 Planning, Decision-Making and Control
Just as critical to an AV’s viability as sensing and mapping is what is
then done with that information: how does the vehicle plan and then
act, whether to accelerate, brake, turn, or activate a turning indicator.
These processes play a critical role in safety: the planning system must
continually plan safe actions, such as slowing down or suddenly changing
lanes to avoid an unexpected obstacle when braking is not an option.

The planning and decision-making process also alters significantly
when considering on-road delivery vehicles that carry goods rather than
people, like Nuro’s delivery vehicles. In accident situations, no longer is
there any real tension between protecting humans inside and outside the
vehicle: the safety of humans outside the vehicle can be entirely prioritized.
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5 Interaction with Vulnerable Road Users (VRUs)
Vehicles that have reached SAE Level 3 autonomy and above will have to
know how to interact with humans. This includes human drivers, who —
even in a world where autonomous vehicles are rapidly adopted — will
be on the roads for the foreseeable future. Bicyclists, pedestrians, mo-
torcyclists, scooter riders: these categories of vulnerable road users have
enduring claim to their share of the urban pavement. Interacting safely,
explainably and politely with VRUs is likely to remain an essential part of
the AV’s task.

Figure 4: Detecting and predicting the intent of vulnerable road users like
cyclists and pedestrians is a critical challenge for autonomous vehicles.
Source Perceptive Automata.

Pedestrians and cyclists are not predictable using standard techniques
like Kalman filters. Simply stopping every time a VRU could potentially

enter the vehicle’s path results in vehicles that perform excessive and
unnecessary emergency maneuvers. 86% of documented incidents with
AVs are either rear-endings or sideswipings that come from a human’s
misunderstanding of an AV’s behavior. Understanding VRUs is key to
eliminating this failure mode.

5.1 Moving Away from the Trolley Problem Mindset
Much of the attention devoted to interactions between autonomous ve-
hicles and VRUs has focused on ethical dilemmas. A famous thought
experiment, the "trolley problem", where a person is forced to choose
which of two actions which both cause somebody’s death is more morally
acceptable, has been held up as a model for the kinds of decisions au-
tonomous vehicles will have to make. While it may someday be the case
that autonomous vehicles are sophisticated enough and have good enough
information about the world that the primary concern with VRU inter-
action is how to behave ethically in the unlikely event that there is no
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option but to cause catastrophic bodily harm to a human, there are several
reasons this is not currently a primary concern to autonomous vehicle
makers.

First, the starting assumption for many vehicle makers is finding
the motion plan that provably minimizes or eliminates any chance of
a harm-causing interaction. The Intel division MobilEye has published
work attempting to formalize risk analysis in motion planning in order to
develop behavior plans where a negative interaction is impossible. Second,
the types of ethical dilemmas discussed in most trolley problem research
rely on very fine-grained categorization of VRUs — an old person vs. a
young person, a pregnant woman vs. a helmet-less cyclist, and so on —
that are largely out of reach for current perception systems in autonomous
vehicles. Third, much of the current focus in AVs is minimizing harm in
general, and one way to do that is to plan around the level of damage likely
to be su�fered. For these reasons and others, the ethical considerations
raised by the trolley problem are increasingly not being considered as the
most immediate practical challenge for autonomous vehicles [13].

5.2 Key Technical Breakdown
VRUs are sometimes di�ficult to distinguish – from the waist up, a cy-
clist, pedestrian and scooter rider all look highly similar to a computer
vision system. Below we provide a technical breakdown of the relevant
technologies that address this challenge.

5.2.1 Detecting VRUs

When we use the term detection, we mean automatically detecting that
something is in the way of the vehicle. Radar, LIDAR and various other
non-RGB sensors are very capable for this task, but have limitations
around discriminatory resolution (radar) and current cost (LIDAR). Cam-
era sensors represent a cheaper option that has caught on with several car
companies producing self-driving vehicles.

5.2.2 Recognizing VRUs

When we use the term recognition, we mean automatically determining
what exactly is in the scene as sensed by the vehicle. Current recogni-
tion algorithms are largely developed and tested in the laboratory using
standard benchmark datasets like ImageNet and COCO, but a troubling
disconnect exists between laboratory experimentation and real-world
operation. For example, a well-known limitation of all machine learning-
based algorithms is their poor handling of inputs from classes outside
of the training set. This is known as the "open set" recognition problem
and is a common problem in autonomous driving. A new class of open
set-tolerant machine learning algorithms is being developed to address
this [3].
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Figure 5: Reliably detecting and recognizing vulnerable road users like
cyclists is di�ficult enough under normal conditions, but is compounded
in poor visual conditions and when the VRU is partially obscured by other
objects in the environment.

5.2.3 Action recognition

A�ter detection and recognition of a VRU, there comes activity recognition
- what is the VRU doing. Take one scenario: tra�fic o�ficers signaling
cars to follow a detour by waving in a certain direction. With a correct
determination of what the o�ficer’s action means, the vehicle can alter the
course it is following and safely proceed as directed.

This is a non-trivial sequence of events that must unfold within sec-
onds and be executed with a level of accuracy that matches that of the
human driver. As with other areas of visual recognition within computer
vision, great strides have been made in action recognition but current
approaches are not as robust as human drivers.

5.2.4 Prediction

Arguably the most important aspect of interacting with VRUs is prediction.
A motor vehicle that is traveling straight at 25mph on a road and does not
have its brake lights illuminated can be assumed to continue traveling
at approximately 25mph at least momentarily. Compared with vehicles,
VRUs have many fewer constraints in terms of tra�fic signals, other tra�fic,
and rules of the road, and hence have much more variability in potential
paths.

Much work on prediction VRUs has relied on fundamentally physics-
based models; if you know the location and trajectory of the pedestrian,
how well can you extrapolate their future trajectory? Elaborations have
included the use of cues like the presence of relevant context like cross-
walks, and the integration of information regarding the pose of the person.
These approaches have proven relatively robust at very short timescales,
but have not been able to provide useful predictions outside of a time
window of about a second and a half. At normal urban driving speeds,
that’s not enough. One proposed solution is to model the dynamics of
all the actors at an intersection, which critically relies on being able to
accurately model every agent in the scene.

Almost all current approaches su�fer from another problem, which
is that the drivers that VRUs are most comfortable interacting with, hu-
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mans, do nothing like either of these approaches. Humans have a finely
tuned and remarkably high functioning facility called "theory of mind",
which allows them to make behaviorally useful assumptions about the
internal mental state of another human. A human driver isn’t trying to
guess the trajectory of a pedestrian; instead, they’re making sophisticated
inferential judgments about what that pedestrian’s goals are, and how
they might interact in a social process with the vehicle. Approaches which
model this notion look promising.

5.2.5 Communicating car intent to VRUs

The interaction between VRUs and human-driven vehicles begins when
either the driver or the VRU first notices the other, and ends when the
vehicle has proceeded out of the VRU’s field of view. It is bi-directional: the
pedestrian wants to know that the car knows the pedestrian is there, the
car wants to know what the pedestrian wants, and so on. Companies like
Jaguar/Land Rover have experimented with mounting large, cartoon eyes
on vehicles, to communicate information about how the AV is distributing
its "attention" [6]. Former startup Drive.ai designed its vehicles to feature
interactive screens which can communicate more complex messages, like
"I’m waiting for you to cross". These systems have a limited grammar, but
actual interactions between human drivers and VRUs also rely on a very
limited grammar. To communicate with a limited grammar, the ability of
both VRUs and vehicles to understand the intentions and state of mind of
other road actors is essential.

6 Current Technical Issues
With the field maturing over the past fi�teen years since the first DARPA
Grand Challenge in 2004, it’s become relatively clear that there are some
key technical issues that remain unsolved, and are generally widely ac-
knowledged by both industry and researchers working in this area. One
of the most major: interaction with vulnerable road users, has already
been covered. Here we briefly highlight some of the other challenges.

6.1 The Problem of Corner Cases
"Corner cases" as they have become known, are situations that rarely occur
and hence are hard to predict, anticipate and react appropriately to. A
person dressed in a person-sized chicken suit is one example of a corner-
case. For self-driving cars the problem is particularly di�ficult because
the current artificial intelligence techniques behind these systems do not
generalize as well as a human driver, and hence have di�ficulty coping
with these highly unusual situations. Consequently much current e�fort
is being invested in coming up with ways to deal more e�fectively with
these corner cases: by gathering ever larger amounts of data from the real
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world, by simulating billions of miles of driving, and by specifically testing
pathologically di�ficult scenarios over and over again.

6.2 Simulation versus Real-World Testing
A key "problem" for autonomous vehicle developers is that cars are already
quite safe: about one fatality for every 100 million miles of driving [11].
Consequently, it’s very hard to obtain under normal conditions su�ficient
mileage on a limited number of development vehicles to prove the safety
of a system. Developers have therefore turned to simulation as a critical
tool in their autonomy arsenal. High fidelity simulation environments
enable researchers to target specific weather conditions, specific pedes-
trian configurations, and to run much higher throughput simulation and
evaluation than is possible in the real world.

A key challenge in using simulation arises from the "transferability"
problem - how do you show and prove that the system you’ve developed
in simulation will work as well in the real world, since simulation is never
a perfect replication of reality. Much resource and e�fort is consequently
invested in improving the utilization and transferability of development
in simulation environments.

6.3 Sometimes versus Anytime: Weather and Other Envi-
ronmental Conditions

The real-world is a constantly changing environment, which presents
major challenges for autonomous vehicles. First and foremost, the envi-
ronment can change in both appearance and physical structure due to
day-night cycles, seasonal change, and weather conditions such as rain,
snow and fog.

Figure 6: Environmental change poses a significant challenge for camera-
based technologies: the images in the le�t column are from the same place
under radically di�ferent environmental conditions, while the images in
the middle column are from di�ferent places in the environment [8].

Figure 6 illustrates some of the key challenges that a changing world
can cause. The same place (shown in the le�t column) can appear com-
pletely di�ferent at night time during a tropical storm to during clear
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weather in the daytime. The problem is further complicated when con-
sidering the natural environmental aliasing that can also be encountered,
as shown in the middle column: these are two places that are completely
di�ferent locations but look highly similar.

These problems can be partly solved using advanced methods [8] or by
using sensors that are not as sensitive to appearance change like LIDAR.
However, visual sensing is critical for the rich, nuanced understanding of
the world around an autonomous vehicle, and consequently the problem
of operating in challenging visual conditions remains a relevant, and
unsolved, problem.

6.4 Provability, Explainability and Self-Characterization
A significant shortcoming of the present generation of self-driving ve-
hicles (and deep learning in general) is the di�ficulty in describing the
properties of their underlying deep learning models in a rigorous manner.
In essence, the learning problem during training is one of function ap-
proximation, where the approximated function cannot be recovered in an
exact manner a�terward (this is why neural networks have a reputation of
being “black boxes" [5]). We would like to be able to enforce explainability
for any output of a deep learning model, but since we cannot examine
any learned functions directly, we can only turn to the observable output
of the system, the same situation psychologists find themselves in when
studying the human brain. One possibility then is to test the deep learning
models in a manner similar to how psychologists test the brain [9].

For some applications, pausing and handing o�f control to a human
operator is feasible — but only if the system is able to assess its own
performance reliably. To do this, probabilistic outputs reflecting uncertainty

are required. For deep learning-based systems, this can be accomplished
with strategies such as making small perturbations to the weights of the
network, dropping out units of a trained network at test time, the use of a
probabilistically calibrated readout layer or through examining statistical
distributions of the data sampled by the sensors. The choice of distribution
is important: Underestimating the occurrence of rare events can be dangerous,
while over estimating them may be problematic for usability.

7 Autonomous Vehicles Beyond the Road
Beyond the road, autonomous vehicles are or could be deployed in a range
of other domains including mining, logistics, agriculture and defence.
Here we briefly cover the key deployment domains and their unique prob-
lems and opportunities.
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7.1 Mining
Mining in general has several of the key characteristics that faciliated its
early adoption of autonomous vehicles: it’s large enough to support the
capital-intensive development of autonomous vehicle-related technology,
its existing remote operation workflows are more easily automated, and
there are less latency-critical scenarios, meaning occasional handover to
a remote operator is feasible. One example milestone in autonomous ve-
hicles in mining: Rio Tinto’s autonomous haulage system recently hauled
its one billionth tonne autonomously [10].

Figure 7: In underground mining environments a range of challenging
perceptual conditions are encountered by autonomous vehicles including
huge lighting changes, darkness, water and dust. Adapted from [14].

Mining is a challenging environment: in underground environments,
there is no access to satellite-based GPS, so alternative technological solu-
tions are required: some involve installation of additional infrastructure,
local WiFi networks, or on-vehicle camera- and laser-based localization
solutions. On-board camera-based solutions encounter a range of chal-
lenging perceptual conditions: dust, smoke, water, and highly varied light-
ing conditions. Range sensor-based solutions encounter a di�ferent set of
challenges, including the highly aliased geometry of many underground
tunnel systems.

7.2 Logistics
In logistics it is possible to design an entire logistics centre to facilitate
higher levels of automation. Amazon’s fulfillment centres, built on top
of their acquisition of Kiva Systems, are a prime example of this: the
autonomous robots move shelving around, rather than attempting to pick
things o�f static shelves. Other approaches like Ocado’s involve a rigid
square lattice upon which robots move around, picking up and dropping
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o�f grocery loads. In both cases, humans are restricted to certain areas of
the environment, so human safety concerns are significantly reduced as a
technological concern.

7.3 Agriculture

Figure 8: Agriculture shares many of the same motivations for au-
tonomous vehicles as mining, but widespread commercial deployment
has lagged [2].

Farms are generally areas with relatively controlled access and min-
imal to no human presence in the operational zone of an autonomous
vehicle. They are also sometimes areas in which human labour can be
hard to find, further motivating the case for developing autonomous ve-
hicles. Autonomous farming vehicles can perform a range of activities,
including sowing and planting crops, killing weeds and the long term holy
grail: harvesting crops. Progress has been slow: while there have been
dozens of autonomous vehicle trials, there are few long term commercial
deployments. Most of the more capable platform demonstrations have
only been announced in the past 2-3 years [7].

7.4 Defence
In defence, like in mining, the cost per unit of many vehicle types is typ-
ically far larger than a normal consumer car, enabling the use of more
capable sensing and compute. Much modern defence theory assumes that
there will be a complete blackout on both communications and GPS-based
positioning technologies (similar to the conditions imposed on under-
ground autonomous mining trucks): meaning on-vehicle autonomy will
have to shoulder the bulk of the decision-making itself, rather than rely
on outsourcing to a human at a remote command post.
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The environments that these vehicles might deploy into, like ruined,
dusty or smoking urban landscapes and thickly vegetated forests pose
a range of challenging mobility, perception, planning and control chal-
lenges. Finally there are also the ethical considerations around autonomy
in any defence application as well: one that is receiving ongoing and
significant sustained attention [4].

7.5 Other Fields in Brief
There are almost 40 marine ports that are at least partly automated globally
[12], with some of those autonomous components involving autonomous
vehicles, for example shi�ting shipping containers around. Other areas of
autonomous vehicle deployment include sidewalk-based delivery vehicles
like Amazon’s Scout program and Starship technologies. These vehicles
are typically relatively small, cheap and move at relatively low speeds,
radically reducing their danger profile compared to on-road larger vehicles
moving at higher speeds.

8 Conclusion
Autonomous vehicle-enabling technology has matured and advanced sig-
nificantly over the past decade in a range of domains including on-road
passenger-carrying or delivery vehicles, mining and logistics. In some
application areas such as logistics and mining these vehicles already form
a commercially critical part of the companies that operate them, while in
others, most notably on-road autonomous vehicles, widespread commer-
cial deployment has still not occurred.

Much of the core technology is likely to continue benefitting from
steady progress in sensing and compute capability (along with a corre-
sponding decrease in price), and the associated progress in vital technical
capabilities like general scene understanding and vulnerable road user
interaction. In fields where safety is not directly involved, such as those
where humans are physically absent from the operating environment of
autonomous vehicles, future progress will likely be determined by simple
commercial calculations based on the cost and e�ficiency of autonomous
vehicle systems. But for widespread on-road deployment, there remains
key technical hurdles to overcome and demonstrate with respect to safety,
which makes for interesting years ahead.
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