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ABSTRACT

The issues of applying facial recognition at significant distances are non-trivial and often subtle. This paper
summarizes 7 years of effort on Face at a distance, which for us is far more than a fad. Our effort started under the
DARPA Human Identification at a Distance (HID) program. Of all the programmers under HID, only a few of the
efforts demonstrated face recognition at greater than 25ft and only one, lead by Dr. Boult, studied face recognition at
distances greater than 50 meters. Two issues were explicitly studied. The first was atmospherics/weather, which can
have a measurable impact at these distances. The second area was sensor issues including resolution, field-of-view and
dynamic range. This paper starts with a discussion and some of results in sensors related issues including resolution,
FOV, dynamic range and lighting normalization. It then discusses the “Photohead” technique developed to analyze the
impact of weather/imaging and atmospherics at medium distances. The paper presents experimental results showing the
limitations of existing systems at significant distance and under non-ideal weather conditions and presents some reasons
for the weak performance. It ends with a discussion of our FASST™ (failure prediction from similarity surface theory)
and RandomEyes™ approaches, combined into the FIINDER™ system and how they improved FAAD.

1. SENSOR ISSUES FOR FAAD

While many people discuss face at a distance and use traditional NTSC type cameras, an actual application has to
decide how the images of the subject of interest will be acquired. If it is a cooperative subject, then many assumptions
can be made. But for a non-cooperative subject, the real focus of FAAD, the scenario must be focused on a choke point
e.g. a door or pathway where the subject can be expected to appear. The system designer must consider the field-of-
view, resolution and lighting issues when choosing components. A summary of effective FOV for different sensor
resolutions is shown in Figure 1 and Table 1. For low light scenarios some researchers have discussed using thermal
sensors [12], but we consider their resolution generally too small to even consider. Even standard cameras, as 640x480,
provide a FOV too small to seriously consider for acquiring non-cooperative subjects at a chokepoint. FAAD systems
designers must consider the resolution choice early as it impacts processing requirements, lens choices and lighting
requirements.

1280x1024
Usable 1120x824

640x480
480x280

320x240
160x40

2048x1520
Usable 1888x1320

Figure 1: Sensor resolutions and the effective FOV for face recognition at a choke-point. The red area is where the head
must be for the face to be usable assuming an optimistic 80 pixel “face” (50 pixel IPD). Remember the “usable” (red)
area must also account for variations in subject height and thus a mega-pixel sensor is probably a minimum for usable
resolutions. The image on the far right is an EMCCD image from 100m using a 400mm 2.8 lens on a moonless night

with a streetlamp 50m on the left. The circle is the automatically detected face.
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sensitivity. In applications | Usable size in pixels 1888x1320 | 1120x824 | 480x280 | 160x40
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required, even with added Allowed height variation i i i i
illumination, some type of g +25in +15.61in + 54in + 0.61in
image intensification  is | Diagonal size (in pixels) 2303 1390 555 164
needgd. . A . stqdy of Diagonal crossing time 2.8sec 1.2sec .69sec .2 sec
traditional intensifier impacts, - .
ignoring the FOV issues, can Yertlcal/ forward crossing 1.65sec 1.03sec .35sec .05 sec
be found in [1]. In our own Table 1: Usable Resolution, size and time within FOV when FOV is maximum size
work we also tested | that optimistically can be used for face recognition. Conservative estimates would be
intensifiers but found the half the sizes/times shown.

spatial resolution loss from
the intensifiers MTF, combined with its small FOV it provided was too limiting.

For the past 2 years Securics and UCCS have been jointly developing our FIINDER™ (FPGA-enhaed Image
Intensified Networked Detector with Embedded recognition) system. For that system we have switched to using an
EMCCD camera [2], which we found to be superior to tube-based intensifiers. Even with an improved sensor there is a
significant need for lighting normalization, especially to address the issues of the directional illumination. The low
lighting and noise of intensified imagery, coupled with the potential for strong directional lighting (after amplification)
makes this a challenge. While there has been some good work on directional lightning in the past, e.g. [12], we found
that approach expensive and still very limited. Thus we developed a new (patent pending) lighting normalization
algorithm just to address strong directional lighting artifacts and do so in a manner well suited to hardware
implementation. Figure 3 shows an example of this applied to multiple low-light examples as well as comparing it to
the standard normalization from the CSU face toolkit [3] and the approach from [12]. The basic concept of this “DUAL
LUT” normalization is to do histogram shaping, a generalization of histogram equalization, separately around each “eye”
to determine a desired normalization for that region, which is then implemented as a look up table (LUT). Then, each
column of the (potentially rotated) image is normalized using a blending of the two normalizations with pixels between
the eyes doing a bilinear blending of the two normalizations. Beyond the eyes, i.e. the outside of the face, the
normalization from the closest eye is used. With two lookup tables and a spatial defined bi-linear blending, it is very
well suited to a FPGA implementation. The quantitative impact of this normalization, and comparison with standard

Csu
Normalized Normalized

Secuncs

- -
Equinox
Normalized

Securics Dual LUT normalization

Figure 2: Examples of low-light imagery normalized. Left is an example image from [12] . The second column shows the
Equinox normalization from that paper, the third column showing the standard CSU normalization applied to the images
and the fourth column showing the Securics dual-LUT normalization. The right 4 columns show more examples
comparisons of CSU normalization and Securics dual LUT normalization.



normalization, is discussed
in section 5.

Another important issue
is the choice between
rolling and frame shuttering,
which in turn depends on
the lens, and stabilization.

A rolling shutter, even at 2 - I o e .
moderate shutter speeds, Figure 3: Imaging showing clean image, blur and distortion effects. Central 700x720 region

allows for the motion within from 2048x1520 image at 800m F8

the frame to become a geometric distortion rather than just a blur. While blur is a problem, geometric distortions have
an even more dramatic impact on FAAD. Figure 3 shows results, with a camera on a tripod, showing they types of
geometric distortions that can occur. Some interesting results addressing de-blurring are considered in [13]. While some
of those approach may apply to the blurring, they would not address the issues of the geometric distortions can occur. In
addition, that work presumes consistent blurring, which does not occur for vibration blur on rolling shutters.

2. PHOTOHEADS: FAAD AND ATMOSPHERICS/WEATHER

Even after the images are acquired the atmosphere and weather impacts can be critical for FAAD. Studying them is
a challenge as it is hard to collect enough data under varying conditions. To address this we designed a specialized
experimental setup we call Photo-head. The experimental setup of the initial photo-head is shown below with example
images on the right. This “photo-head” data is unique in that it is a well-known set of images (FERET) that were
displayed on a special LCD and then re-imaged from approximately 94ft and 182ft. (We are currently implementing
another photo-head setup at much greater distances). At these distances we needed a long FOV lens, for which we used
Phoenix 500mm zoom lenses (for 35mm cameras), with C-Mount adapters and Panasonic PAL cameras. The marine
LCD was 800x600 resolution with 300NITS and a special anti-reflective coating. For display the FERET face images
were scaled up for display. As one can see from the examples on the right, which are all from the same subject, the
FERET data has a range of inter-pupil distances, poses and contrasts. This re-imaging model allows the system to
control pose/lighting and subjects so as to provide the repeatability needed to isolate the effect of long-distance imaging
and weather. As one can see, the collection produced images sufficient for identification but with the types of issues,
e.g. loss of contrast and variations in size, that one would expect in a realistic long-distance collection. All experiments
herein used Facelt (V4), the commercial face-recognition system from Identix. This algorithm was one of the top
performers in the National Face Recognition vendor tests [4].

Photo-head Experimental Setup

ann ane naae aoe aan ane

Figure 4: Photohead experimental setup on left, and sample photohead images on the right.
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While it is not show here, but increasing wind even
more significantly impacted the system, in part
because at these ranges even a small deflection of the camera causes significant blur and may take the face out of the
sensors field of view. (With these long FOV lenses, we needed 30” housings that increase wind loading.) These graphs
are computed over more than 20,000 images and with the “controls” of the photo-head collections we know the images
are identical, thus the variations are not artifacts of individual errors, pose or expression changes. The techniques of [6]
improved performance slightly, not statistically significantly, in large part because they don’t address blur or geometric
distortion, only contract and dynamic range.

Figure 5: CMC curves for various weather settings.

In addition to variations due to obvious weather effects, our experiments also showed that there were variations due
to time of day. The error bar for the graphs is shown on the leftmost point of figure 6 is consistent in size for the full
graph. These differences are statistically significant. Note that to reduce the impact of pose and lighting variations,
these images are using the exact same image on the display as in the recognition database — the only variations between
the probe and the gallery are those caused by the imaging system. Recall that indoors at 15ft, the performance on this
type of data is nearly perfect. Even with this very strong constraint we see that at 182t on a clear and low-wind day, for
Rank N recognition the performance of one of the best commercial algorithms is below 65% with N <4 and still well
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Figure 6: Variations over time of day Figure 7: Recognition Rank for various “quality” images

below 90% recognition rate even when N is 10. Again, these are averaged over hundreds of trials with 1024 images per
trial, so this is not a sampling artifact.

A first guess might be that the impacts were on the raw “image quality’. We examined various measures of facial
image quality and (to our surprise) many of the errors had nothing to do with human perceived or algorithmically
measured image quality. Figure 7 shows some examples of the recognition rank (i.e. where the image ended up when
probes are sorted by match score) for a collection of images from a “same image” experiment. Rank and image quality
in this set were inversely correlated.

Our research set off to find the causes of this unexpectedly poor performance. After considerable investigation we
hypothesized the poor performance was due in large part to error in localization of the eyes. In [7] we presented an
analysis of this theory. To definitively show the cause we added registration markers within our photo-head data to
allow us to transform the original eye coordinates to provide eye-locations in the captured images. The graphs above
show the recognition performance (with error bars) for the off-the-shelf Facelt algorithms and when use forced Facelt to
use the correct eye positions. The results on both cameras where statistically significant, and when the eyes are
corrected the performance both far and near cameras are similar. These results are, of course, highly optimistic because
the data for correction is artificial calibration points and secondly this is self-matching, with the same image as probes
and gallery so the near perfect recognition is to be expected.

It is important to note that the “eye-locations” being discussed are not just a question of where in the image the eyes
appear but how that position related to where it should be in the image. In the “good quality” images of figure 7, the
corrected eye position is not in the middle of the eye! Atmospheric turbulence and lensing effect can distort the face
image to the point that to work properly the system needs to use a different eye position for its coordinate system and
normalization procedures. Many of the computed eye locations were visibly off the eye, and the average difference
between the computed and Facelt eyes was 6 pixels.

In conclusion, weather and atmosphere have effects that significantly impact the system, as demonstrated in tightly
controlled experiments. The impacts grow with distance and is not just a question of loss of contrast or blurring, but
also of geometric distortions.

3. FASST: FAILURE FROM SIMILARITY SURFACE THEORY

For non-cooperative subjects at a distance we need some way to determine when the images are good, and when
they are poor. At the system level, the simplest application of prediction is in an interactive or on-line system where, if
we can predict failure, then we might simply re-acquire a new image and try again. Rather than a pure binary go/no-go,
the prediction can be use to determine weights for a temporal fusion module. This has an obvious direct application in
biometrics for uncooperative subjects in video. Most commercial systems have some very simple form of this type of
failure prediction, e.g. they don't even bother with recognition unless the face detection module reports a face with
sufficient confidence. We have introduced a more powerful approach, using the similarity scores that exist after a
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demographic populations. What might be “peaked” in a low-noise system, where the inter-subject variations are small
compared to intra-subject variations might be flat in a system with significant inter-subject variations and a large
population. These variations are functions of the underlying population, the biometric algorithms, and the collection
system. Thus in FASST, the system “learns” the appropriate shape information for a particular system installation. We
believe an on-line learning algorithm may be the most appropriate form for final deployment, however initial work will
use off-line learning and more careful experimentation.
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Figure 8: Accuracy with auto detected eyes and with computed “corrected” eyes.

While multi-sensors might be used in some applications, the goals of the FIINDER™ system will generally be
stand-alone or single sensor systems, thus we will be using FASST for fusion from a single sensor, combining different
algorithms and perturbations of the original data. ~We have been exploring two different algorithms to implement
FASST-- one based on Ada-Boosting [8] and one based on multi-layer neural nets using wavelet features [9]. Ada
boosting builds a strong classifier from multiple rounds of simple combinations of weak classifiers. In essence, it
“learns”, through a non-linear minimization, the structural combinations of weak classifiers that best account for the
training data. It allows for the efficient determination of which features matter for a particular dataset.

This FASST using Ada-boost has been applied to predicting failures of the FacelT face recognition algorithm by
Identix, and tested on both synthetic and natural variations in images. The example on the right shows failure prediction
FA/MD rates for both the training and test sets for images
collected under real weather conditions. These images were
taken at 100ft and 200ft, which make facial recognition far more
challenging. The training/testing for this used 21,535 images
(split equally). With a FA rate below 2%, the system was still
correctly predicting more than 75% of the recognition system
failures for one of the leading commercial face-recognition
systems. For fusion on fixed data, the FA/MD rate would be
quite effective in weighting one algorithm versus another. If a
false alarm means taking/processing another image from the
video sequence, as it would with most remote recognition of un-
cooperative subjects, then an even higher “false alarm” rate can
be tolerated. For a miss-detection rate of 10% (i.e. the system
correctly predicted 90% of all recognition failures), we have a
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Figure 9: Failure prediction performance for
FASST using Adaboost. Tested on 20,000
Photohead images.

features of importance very quickly, and the resulting classifiers
are suitable for real-time operation.



The second approach we have been developing uses a back-
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two different algorithms, one of the leading the commercial
products, and EGBM as implemented by [3]. The figure on the
right shows the overall improvement combining the
commercial system with the FASST perturbations. Four different times of day throughout the month of May were used
for this analysis. The results are shown averaged over multiple days, grouped by time of day. The error bars show 95%
statistical confidence. Note that in this set of experiments, errors in eye localization come from two sources: the eye
localization error due to degradation of the input image as a result of atmospheric effects, and the eye localization error
due to possible weaknesses in the commercial eye localization algorithm. Together, eye localization error is clearly an
unknown quantity, however it is exploited quite effectively here to improve overall classification. It is clear that the
improvements were statically significant. Improvements for EGBM were similar, in the 4%-8% range.

Figure 10: RandomEyes Performance Improvements
on a leading commercial algorithm.

4. BIOTOPES® FACES

Recently work by Dr. Boult developed the concept of Biotopes” revocable biometric-based tokens that protect the
privacy of the original user, provide for many simultaneous variations that cannot be linked. More significantly,
however, we are using Biotopes® faces for this project because the transform induces a robust distance/similarity metric
for use in matching in encoded space. This robust distance transform has been shown to significantly improve
performance and is expected to be even more significant when used in difficult settings [10]

While many face algorithms have been developed, after finding features most have used a L2 distance measure or a
slightly more robust form such as Mahalanobis Cosine to measure distance between probe and gallery. These types of
measures have the disadvantage that a few features being significantly off can have a dramatic impact on the recognition
rate. The transform and matching used for biotopes basically reduce the penalty for being too far from the particular
feature to a constant. Thus features that are significantly in error have a constant (and hence greatly reduced) impact.
This can be very important in less than ideal setting for which the FIINDER™ system is being designed because with
poor lighting and non-cooperative subjects individual features are more likely to have anomalous measurements.

5. PUTTING IT ALL TOGETHER: FIINDER FOR FAAD

The above three technologies are being combined, with an EMCCD and FPGA computing core, to form the core of the
FIINDER system for Face At A Distance. A block diagram is shown in Figure 10. The FPGA-enhanced system does
the face-finding in hardware. Because of the lighting issues, which will likely be magnified by the use of the EMCCD,
we start with a special lighting normalization described in section 1. The core uses the perturbation approach, a multi-
pose gallery, plus multiple algorithms (two variations of the Biotope approach) with a FASST-based prediction fusing
the perturbations to account for long-range atmospherics and pose issues of non-cooperative subjects. FASST is also
being used for temporal fusion as we did in [11]. We have already developed a face-detection and localization routine
that is suitable for FPGA implementation. Mapping this to embedded systems hardware, including the formal fixed-
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Figure 10: Overall FIINDER architecture for Face At A Distance.

point analysis is underway and that full fixed-point algorithm, with which we will be doing the formal testing. The
remaining components exist, and are being ported to the FPGA environment, which will undergo engineering and
prototype testing in the field to take the system to TRL6.

An important question is, of course, how well this performs. Unfortunately, no existing dataset is very well suited for
proper performance testing of this novel approach and a collection is being designed for Spring 2008. To provide an
overall idea of its performance, the techniques have been tested on multiple well known datasets. Table 2 shows results
of the revocable Biotopes on 4 FERET datasets. To demonstrate the generality of the improvements to be obtained by
using Biotopes and FIINDER we extended algorithms included in the Colorado State University (CSU) Face

Identification Evaluation System (Version
5.0)[3]. In particular we developed
Biotope versions from the “baseline”
PCA-based face recognition system using
multiple metrics, from their LDA-based
face recognition algorithms and from the
Elastic Bunch Graph Matcher (EBGM).
As is evident, applying the revocable
transforms to convert PCA into a biotope
algorithm very significantly improved its
performance. (Also for LDA and EBGM).
While the best of the original FERET is
shown in the table, commercial algorithms
have continued to improve since that date.
For comparison, the highest reported
score for any commercial algorithm on
Dupl is 89%, so the group LDA was as
effective as any known commercial
algorithm and the “individual” biotope
algorithms were better. The “Individual”
Biotopes performed better, but require

Algorithm \ Dataset Dupl | Dup2 Fafb Fafc
# Matched scores 479 159 1195 194
# Non-matched 228K | 25K | 1427K | 37K
FERET “BEST” 59.1 52.1 86.2 82.1
Individual PCA Biotope” Face 90.7 | 87.2 99.5 100
GroupRobust PCA Biotope" Face 86.6 | 85.5 98.3 100
LDA Biotopes® Face 90.7 87.2 99.5 100
GroupRobust LDA Biotope" Face 88.9 | 855 98.9 100
Individual EBGM Biotope"” Face 913 | 88.0 100. 100
Multi-image FIINDER™ PCA 100 100 100 100
Multi-image FIINDER™ LDA 100 100 100 100
PCA L2 w Securics Normalize 57.2 13.2 59.0 60.2

Table 2: Rank 1 Recognition Rates on FERET subsets




multiple images of an individual for enrollment. The performance of EBGM was superior to the PCA and LDA based
algorithms, but the cost and structure of that algorithm make it unacceptable for our real-time system. The final row of
table 2 shows the performance gain for the PCA algorithm just from using the new Securics Normalization introduced in
Section 1. With improved intensity normalization performance was significantly increased on Dupl and FAFC, with
similar performance on Dup2, but a slight loss of performance on FAFB. Note the “gallery” was the PCA templates of
the stock gallery with the standard normalization, and that may have caused the loss of performance on FAFB and Dup2.
The table also shows that the multi-image FIINDER approach, implemented in floating point for the individual Biotopes
versions, with the new normalization and perturbations, using either PCA or LDA alone achieve 100% recognition
accuracy on this data. This 100% recognition rate simply shows the datasets are too small for effective testing of this
algorithm Testing with larger datasets is expected after the fixed-point version of the FIINDER system is complete.

The second dataset we used for testing is the Pose Illumination and Expression (PIE) dataset from CMU, [Gross-et-al-
04]. Here we considered only the lighting and illumination, not the pose or expressions. The performance for the
Multi-image FIINDER™ algorithms was again 100% recognition, but PIE only has 69 subjects so while it shows
robustness to lighting, the gallery size is still quite small. In comparison, even with the improved Dual-LUT
normalization the standard PCA and LDA algorithms only achieve 83% and 72% rank-1 recognition respectively.

6. CONCLUSIONS

This paper reviewed our work on major issues for Face at a Distance (FAAD), including sensor issues and
weather/atmospherics. It reviewed the Photo-head concept and results for systematic evaluation of atmospheric and
weather effects. This paper showed techniques that, when combined, addressed these issues, and introduced the
FIINDER architecture for effective FAAD. The conclusion is: non-cooperative face-at-a-distance, especially in low
light, is a challenging problem that must be addressed at a every level of the system design, including the sensor, the
lenses, and the algorithm, with the system predicting its own performance.
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