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Abstract—To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have
taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision
applications is “open set” recognition, where incomplete knowledge of the world is present at training time, and unknown classes can
be submitted to an algorithm during testing. This article explores the nature of open set recognition, and formalizes its definition as a
constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires
strong generalization. As a step towards a solution, we introduce a novel “1-vs-Set Machine,” which sculpts a decision space from
the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in
computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider
both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face
matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines
adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

Index Terms—Open Set Recognition, 1-vs-Set Machine, Machine Learning, Object Recognition, Face Verification, Support Vector
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1 INTRODUCTION

Both recognition and classification are common terms in
computer vision. What is the difference? In classification, one
assumes there is a given set of classes between which we
must discriminate. For recognition, we assume there are some
classes we can recognize in a much larger space of things
we do not recognize. A motivating question for our work
here is: What is the general object recognition problem? This
question, of course, is a central theme in vision. According
to Duin and Pekalska [1], how one should approach multi-
class recognition is still an open issue. Should it be performed
as a series of binary classifications, or by detection, where a
search is performed for each of the possible classes? What
happens when some classes are ill-sampled, not sampled at
all or undefined?

The general term recognition (and the specific terms ob-
ject recognition and face verification that we consider in
this article) suggests that the representation can handle dif-
ferent patterns often defined by discriminating features. It
also suggests that the patterns to be recognized will be in
general settings, visually mixed with many classes. For some
problems, however, we do not need, and often cannot have,
knowledge of the entire set of possible classes (Fig. 1). For
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Fig. 1. Vision problems arranged in order of “openness”.
For some problems, we do not have knowledge of the
entire set of possible classes during training, and must
account for unknowns during testing. In this article, we
develop a deeper understanding of those open cases.

instance, in a recognition application for biologists, a single
species of fish might be of interest. However, the classifier
must consider the set of all other possible objects in relevant
settings as potential negatives. Similarly, verification problems
for security-oriented face matching constrain the target of
interest to a single claimed identity, while considering the
set of all other possible people as potential impostors. In
addressing general object recognition, there is a finite set of
known objects in myriad unknown objects, combinations and
configurations – labeling something new, novel or unknown
should always be a valid outcome. This leads to what is
sometimes called “open set” recognition, in comparison to
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systems that make closed world assumptions or use “closed
set” evaluation.

For many vision problems, researchers have assumed one
has examples from all classes, and have subsequently labeled
the entire space in binary fashion as either positive (+1) or
negative (�1). In contrast, an open set scenario has classes,
not just instances, in testing that were not seen in training. It
is somewhat reasonable to assume we can gather examples of
the positive class, but the number and variety of “negatives” is
not well modeled. The important difference is, in the words of
Zhou and Huang [2] (with a bit of inspiration from Tolstoy),
“All positive examples are alike; each negative example is
negative in its own way”. Furthermore, even if all of the
negative classes were known, from a pragmatic point of view,
we generally cannot have sufficiently many positive examples
to balance the required sampling of the negatives. In either
case, we seek to generalize the problem from a closed world
assumption to an open set.

Object detection is perhaps the most familiar vision problem
that does not exist in a specific closed setting. The goal of
detection is to locate an object of interest in an image. Since
a negative detection is anything other than the class of interest,
the problem is much more open than closed. Popular detection
approaches train binary classifiers with a relatively modest
sampling of positive examples and a very large sampling
(often on the order of millions) of negatives from thousands
of different classes. This is an appropriate strategy when a
good sampling of the negative classes is possible, but with
very incomplete knowledge of the possible negative classes
it can lead to inaccuracies in many settings. In addition, we
are generally left with a “negative set bias” [3] defined by
the very large sampling of classes we do know about. In a
sense, when we have very limited knowledge of the domain
of possible classes, detection becomes a special case of open
set recognition, with just one class of interest.

Fig. 1 depicts a few popular vision problems with varying
qualitative degrees of openness. Intuitively, a problem with
only a single class of interest is less open than one with many.
However, the number of unknown classes we might encounter
should also play a critical role. Let us formalize the “openness”
of a particular problem or data universe by considering the
number of target classes to be identified, the number of classes
used in training, and the number of classes used in testing:

openness = 1�
s

2⇥ |training classes|
|testing classes|+ |target classes| (1)

The above formulation yields percent openness (values be-
tween 0% and 100%), where 0% represents a completely
closed problem, and larger values more open problems. For
a fixed number of training classes, increasing the number
of testing classes increases openness, as does increasing the
number of target classes to identify. Increasing the fraction of
classes available during training decreases openness. By taking
the square root in Eq. 1, openness grows in a gradual manner
as the number of classes increases (if linear, openness in this
formulation would quickly move towards 1 with just moderate
numbers of classes, which is not as meaningful). Table 1 shows

TABLE 1
Examples of openness values for the vision problems of
Fig. 1 as a function of the number of target classes to be
identified, training classes and testing classes, calculated
using Eq. 1. Multi-class classification is always 0% open.

Problem Targets Training Testing Openness
Typical Multi-class [1] x x x 0%
Our work: Face Verif. 12 12 50 38%
Typical Detection [4] 1 100,000 1,000,000 55%
Our work: Obj. Recog. 88 12 88 63%
Our work: Obj. Recog. 88 6 88 74%
Our work: Obj. Recog. 212 6 212 83%

values of openness for different examples considered in our
work and others from the spectrum of problems in Fig. 1.
The number of training instances per class is important to the
accuracy of a given classifier, but is not a property of the
problem itself, and thus not part of this definition. For almost
any unconstrained real world problem, the number of testing
classes can grow rapidly with openness approaching 100%.

Potential solutions to the open set recognition problem must
optimize for unknown classes, as well as the known classes.
An important difference from typical multi-class classification
is that a general open set multi-class solution must be able to
label the input as one of the known classes or as unknown. It is
not sufficient to just return the most likely class: the classifier
must also support rejection. The first insight we offer here is
that Support Vector Machines (SVMs) define half-spaces, and
will classify data that is very far from any training sample.
While we need solutions that support strong generalization,
there should be a limit on how far from known data a sample
associated with a given label can be.

Empirical risk, measured on training data, is what is clas-
sically defined and optimized over. However, for open set
recognition it is critical to consider how to extend the model
to capture the risk of the unknown from insufficient gener-
alization or specialization. This is different from the binary
classifier approach that tries to maximize the margin, which is
the gap between the positive and negative decision boundary.
While maximum-margins can be very effective for closed set
problems, the approach generally results in overgeneralization
for open set problems. For example, in Fig. 2, the space
containing unknowns (“?”) would likely be labeled “dog” as
there is nothing to limit the positive label propagation if the
decision boundary exists between birds & frogs and dogs. The
SVM found a plane to separate positive and negative classes,
but only by considering the known negatives. One might
view the maximum-margin approach as assuming all unknown
points are equally likely to be positive and negative based on
what is nearest, even if that point is quite far away. For a
sample coming from an unknown class, such as the raccoon,
that is an incorrect assumption. We believe that good solutions
to the open set recognition problem require minimizing the
open space representing the learned recognition function f ,
outside the reasonable support of the training samples.

The primary goal of this work is to develop a thorough
understanding of open set recognition in a supervised learning
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setting. We construct the first formalization of this problem,
and provide an empirical case expanding existing 1-class
and binary SVMs with linear kernels to address open set
recognition. The resulting 1-vs-Set Machine is a step towards a
solution. Specifically, we revisit the ideas of the 1-class and bi-
nary SVM for open set recognition problems, and address the
generalization/specialization issues through a novel learning
technique. Instead of tackling the generalization/specialization
problem as an error minimization of the training function of
the SVM, we introduce a concept of open space risk and
then minimize an error function combining empirical risk over
training data with the risk model for the open space. The
known class training data represents the “Set” of 1-vs-Set.

To improve the overall open set recognition error, our 1-vs-
Set formulation balances the unknown classes by obtaining a
core margin around the decision boundary A from the base
SVM, specializing the resulting half-space by adding another
plane ⌦ and then generalizing or specializing the two planes
(shown in Fig. 2) to optimize empirical and open space risk.
This process uses the open set training data and the risk
model to define a new “open set margin”. The second plane
⌦ allows the 1-v-Set machine to avoid the over generalization
that would misclassify the raccoon in Fig. 2. The overall
optimization can also adjust the original margin with respect
to A to reduce open space risk, which can avoid negatives
such as the owl.

We organize the rest of this article as follows. First, we
formalize the open set recognition problem in Sec. 2. In
Sec. 3, we take a look at the related work in open set
recognition and machine learning across vision and pattern
recognition. In Sec. 4, we formalize our theoretical model of
margin generalization and specialization to develop the 1-vs-
Set Machine. We apply this model, as well as common SVM
models for comparison, to the problems of object recognition
and face verification and present results in Sec. 5. We conclude
and discuss some ideas for future work in Sec. 6.

2 OPEN SET RECOGNITION FORMALIZATION

Assume images of objects from various classes are processed
into d-dimensional representations, i.e. we measure feature
vectors x 2 Rd. We assume we have countably many classes
y labeled by N, and that there exists a probability measure
P (x, y) over (x, y) ⇢ Rd ⇥ N. For simplicity we will focus
on open set recognition of a single class, and without loss of
generality we assume the label of this class of interest is 1.
Further, we assume a sample can be either positive or negative,
but not both (no nested classes). Let P ⇢ Rd represent the
positive input space where x 2 P if P (x, 1) = sup

y

P (x, y),
i.e. inputs where the class of interest is the most likely
class. Recognition here can be viewed as finding an efficient
approximation of P .

Let f : Rd 7! N be a measurable recognition function for
some class P , mapping measurements x to labels y. Following
Smola [5], our overall goal is to find a function f that
minimizes our expected error. More precisely, consider a loss
function L(x, y, f(x)) that defines the penalty for incorrectly
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Fig. 2. The Open Set Recognition Problem explicitly
assumes not all classes are known a priori. Square
images are from training, oval images are from testing.
The class of interest (“dog”) is surrounded by other
classes, which can be known (“frog”, “birds”), or unknown
(“owl”,“raccoon”, “?”). Plane A maximizes the SVM margin
making “dog” a half-space – which is mostly open space.
The 1-vs-Set machine adds a second plane ⌦ and defines
an optimization to adjust A and ⌦ to balance empirical
and open space risk.

labeling a vector x:

L(x, y, f(x)) � 0 and L(x, y, y) = 0 (2)

The fundamental multi-class recognition problem would be to
find a recognition function f that minimizes the ideal risk RI :

argmin

f

⇢

RI(f) :=

Z

Rd⇥N
L(x, y, f(x))P (x, y)

�

(3)

Unfortunately, since we are not given the joint distribution
P (x, y), we cannot directly minimize Eq. 3, and the problem
is unsolvable in the fundamental formulation. The traditional
approach at this point is to change the problem to use only
things we do know. As Smola notes in [5] (Sec. 1.2.1), “The
only way out is to approximate [P (x, y)] by the empirical
probability density function...”. Hence minimizing the ideal
risk is switched to minimizing the empirical risk. Unfor-
tunately, even minimizing empirical risk is, in general, ill-
posed [5], [6]. So prior work ([6], [5], [7], among others) ex-
ploits other knowledge, such as assuming that the label space
is at least locally smooth and regularizing the empirical risk
minimization to make it well-posed. For example, assuming
that f is from a particular Reproducing Kernel Hilbert Space
(RKHS) H is a way of adding a smoothness constraint, and
minimizing empirical risk over f 2 H (with a regularization
term) is then well-posed.

This begs the question if “the only way” to approximate the
ideal risk formulation is empirical risk, or if there are other
things that are known that could/should be added as we move
from the ideal risk minimization of Eq. 3 to our formulation of
open set recognition. We prefer to make minimal assumptions
about f , but intuitively, there is risk in labeling the open space
as “positive” for any known class. The insight for open set
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recognition is to recognize that we do know something else:
we know where positive training samples exist and we know
that in “open space” (the space far from known data) we do
not have a good basis for assigning a label for the class of
interest.

Before formalizing open space risk, we note that the
maximum-margin concept can be viewed as using weak
knowledge on open spaces, wherein we expect there to be
errors near the decision boundary. Thus, these algorithms seek
to maximize the distance between the known data and the
decision boundary. This maximum-margin assumption does
well for the space between the classes, but does not really
address the remaining open space. There is, in general, still
infinite amounts of space far from any known samples and
often there is not even a point on the “other side” of such
open space that could be used to define a margin. We seek to
formalize and then manage such risk.

What information does open space provide? If an oracle
provides the function  (x) = 1 for open space, where
none of the known classes exist, a weak recognition system
¬ (x) = 1 can be built, even with no training samples.
Combining training data with  , the estimation could be even
better. Ideally, one might hope to define open space as the
subspace Rd�P , but that just reduces the definition back to the
problem of recognition. Estimating open space from positive
data leads directly to a one-class formulation such as the 1-
class SVM we examine in this article. Note, however, that the
open space for a linear 1-class SVM is still a half-space. Our
approach to open space estimation is similar in spirit, but the
difference is that we reduce the labeled space to less than a
half space and include other training data in the definition of
open space, as well as in the subsequent recognition function.

While we do not know the joint distribution P (x, y) in
Eq. 3, one way to look at the open space risk is as a
weak assumption: far from the known data the Principle of
Indifference [8] suggests that if there is no known reason
to assign a probability, alternatives should be given equal
probability. In our case this means that at all points in open
space, all labels (both known and unknown) are equally likely,
and risk should be computed accordingly. However, we cannot
have constant value probabilities over infinite spaces – the
distribution must be integrable and integrate to 1. We must
formalize open space differently, e.g. by ensuring the problem
is well posed and then assuming the probability is proportional
to relative Lebesgue measure [9]. Thus, we can consider the
measure of the open space to the full space, and define our
risk penalty proportional to such a ratio.

Consider an example with a large ball S
o

containing both
the positively labeled open space O and all of the positive
training examples, as well as a given measurable recognition
function f where f(x) = 1 for recognition of the class y of
interest and f(x) = 0 when y is not recognized. Open Space
Risk RO(f) can be defined as

RO(f) =

R

O f(x)dx
R

S

o

f(x)dx
(4)

where open space risk is considered to be the fraction (in
terms of Lebesgue measure) of positively labeled open space

compared to the overall measure of positively labeled space
(which includes the space near the positive examples). The
more we label open space as positive, the greater our open
space risk. Eq. 4 is only one theoretical possibility. Other
definitions can also capture the notion of open space risk,
and some may do so in more a precise manner. This example
does not include a loss function, class conditional densities,
or class priors, but it is possible to define open space risk
models that do. Such alternatives may allow for more precise
estimations and/or simplify multi-class formulations, but since
the unknown classes have unknown priors and unknown joint
distributions, they would need to introduce more assumptions
and complexity. A specific open space risk model for linear-
kernels is introduced in Sec. 4.2.

While we want to minimize risk of the unknown in open
space, we also need to balance it against the empirical risk RE
(the data error measure) over the training data. This empirical
risk combines data errors via some type of performance metric
(empirical probability of error and loss functions). Researchers
have looked at SVMs and other learning models that optimize
a more general data error measure [10]. While the presentation
herein applies to many measures, and our implementation can
optimize for multiple different empirical risk models, the one
we consider most appropriate for the open set problem is the
inverse of the F-measure. We look at this score in more detail
in Sec. 5. Empirical risk can also include the specification of
hard constraints, e.g., meeting at least a particular false accept
or false reject rate, which we discuss below.

In summary, our goal is to balance the risk of the unknown
in open space with the empirical (known) risk. In this sense,
we formally define the open set recognition problem as fol-
lows:

Definition 1. (The Open Set Recognition Problem) Let sam-
ples ˆV = {v1, . . . , vm

} from P be our positive training data
and samples ˆK = {k1, . . . , kn

} from other known classes K
be our negative training data. Let U be the larger universe
of allowed unknown (negative) classes which appear only in
testing and let T = {t1, . . . , tz}, ti 2 P [ K [ U be our test
data, where problem openness in Eq. 1 is > 0.

Given the training data ˆV [ ˆK, an open space risk function
RO, and an empirical risk function RE , open set recognition
is to find a measurable recognition function f 2 H, where
f(x) > 0 implies positive recognition, and f is defined by
minimizing the Open Set Risk:

argmin

f2H

n

RO(f) + �
r

RE(f(

ˆV [ ˆK))

o

(5)

where �
r

is a regularization constant.

In Eq. 5, we have defined open set recognition as minimiz-
ing the open set risk, which combines the open space risk
and empirical risk, over the space of allowable recognition
functions. Given what is assumed about the function f 2 H,
this definition balances what is known via ˆV [ ˆK, and the
open space risk RO associated with unknown classes U .

We can also allow for explicit hard constraints on the train-
ing error (empirical risk). This is useful in some applications
where one type of error may be constrained for operational
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Fig. 3. The trouble with binary (1-vs-1) and multi-class (1-vs-All) classification for open set problems. In a 1-vs-1
scenario (a), good separation can be achieved between two classes during training, but this establishes margins that
need not separate additional known or unknown classes. For instance, considering the margin between class 1 and
class 2 above (labeled 1vs2), examples from class 3 and unknown classes fall indiscriminately across the margin.
Similarly, in a 1-vs-All scenario (b), we see the same problem for unknown classes. In both cases, when considering
just an additional training example (the red circle with a star in each figure), the results can be even worse, as the
margins re-adjust for maximum separation. Far from the training classes this produces very significant margin plane
movement, which can be seen in the light gray new margin separation plane 1vs2* in (a).

use, e.g. a maximally allowable false accept rate. Satisfying
such constraints is not easily specified in the minimization
formulation of Eq. 5. We can add this by making Eq. 5 subject
to a constraint on the fraction of errors observed in the training
set:

m↵ 
m

X

i=1

�(f(v
i

)) and n� �
n

X

j=1

�(f(k
j

)) (6)

where v
i

2 ˆV , m is the number of positive training samples,
k

j

2 ˆK, n is the number of negative training samples, ↵ � 0

and � � 0 allow a prescribed limit on true positive and/or false
positive rates, and �(z) is a given loss function, e.g., the classic
soft margins hinge loss �(z) = max(0, 1�z) or squared hinge
loss �(z) = max(0, 1� z)

2 functions. For a prescribed ↵ and
� it is possible there is no solution (100% classification of true
positives with no false negatives is often not achievable). In a
practical setting with operational constraints, we can fix either
↵ or � and then choose our empirical risk term RE , requiring
the system to effectively optimize the other parameter. This
can allow us to set minimum precision or recall rates in an
object recognition scenario, or bound the false accept rate in
a face verification scenario.

In defining an open set problem, the evaluation methodology
must sample some of the “unknown” classes in U . Thus
they are actually “known” but excluded from training. This is
similar in spirit to general machine learning evaluation, where
we must have “known data” that is considered unknown in
training. One can do hold-out type cross validation, or simply
have separate testing data. Similarly, open set recognition
can hold out some classes for testing. Note that the formal
definition does not precisely define the space of unknown
classes – we do not assume they are enumerated, let alone
modeled. It is, however, important to define an evaluation
paradigm that does include the unknown classes. If we never

test on “unknown” classes, the solution may seem overly
constrained. Thus, testing on some set T where problem
openness is > 0 is a requirement for open set recognition
evaluation. Ideally, evaluation should consider test sets with
multiple levels of openness and multiple sizes of training and
testing data.

3 RELATED WORK

Open set recognition has received only limited treatment in
the literature, and almost all prior work focuses on evaluation.
We are unaware of any prior formal definitions outside of
evaluation protocols. In a study on evaluation methods for face
recognition by Phillips et al. [11], a typical framework for open
set identity recognition is described. The key to evaluation in
open set recognition in the context described by Phillips et
al. is the definition of an operating threshold ⌧ , which all
classification scores must meet or exceed to be considered
matches. An open set recognition system incorporating a
threshold does not naı̈vely accept a top score as a match,
allowing it to handle the cases where a sample does not
correspond to a known class. Of course, the choice of ⌧
remains dependent on the requirements of the recognition
system and its operating environment.

A series of thresholds can be considered to build a full
performance curve (CMC, DET, PR, etc.), with parameters
for matching instances selected by choosing one point on the
curve. This idea is not just constrained to face recognition,
and is familiar to many researchers working in recognition
areas across vision. In [12], Fayin and Wechsler again view
open set face recognition from just an evaluation perspective,
describing it as a variation of the watch-list formulations in
earlier face recognition testing at the National Institute of
Standards and Technology (NIST). They state: “Open Set
recognition operates under the assumption that not all the
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probes have mates in the gallery and it thus requires the reject
option.”

Given our formal definition of open set recognition from
Sec. 2, we briefly discuss related work in recognition tech-
niques that might satisfy that definition. A natural inclination
towards solving the open set problem may be to consider
binary and multi-class learning approaches with a represen-
tative sampling of negative training data to generalize the
classifiers as much as possible. However, the nature of binary
classification inhibits the controlled generalization needed for
the open set problem. Consider the two examples in Fig. 3.
1-vs-1 classifiers [13] are trained by using positive examples
from one class and negative examples from another. In a 1-
vs-1 scenario, good separation can be achieved between the
two classes during training, but this does not establish margins
that separate additional known or unknown classes. 1-vs-All
classifiers [13] are trained by using examples of a single
class as the positive training set, and examples from all of
the remaining (known) classes as the negative training set.
In a 1-vs-All scenario, we can see the same problem that is
present for 1-vs-1 for unknown classes. In both cases, when
considering just an additional training example, the results
can be even worse, as the margins re-adjust for maximum
separation between the known data, while not taking other
potential classes into account.

Another issue for any open set problem is that the training
is both highly unbalanced and very incomplete (especially in
the case of detection). Unbalanced data generally leads to
overspecialization on the negative side. Resampling does not
really solve the problem and the inherent imbalance in open
set recognition presents issues that binary classifiers cannot
easily overcome [14]. Thus, we turn to other methodologies
that compensate for these deficiencies in our work.

In this article, we consider the open set recognition problem
using the 1-class and binary SVM as a basis and introduce
a new formulation to solve the problem with respect to
generalization/specialization. While it is possible that a density
estimator (such as [15], [16], [17], [18]) could be used instead
of the SVM, we restrict our focus to linear kernel machines.
SVM has a number of desirable traits for this work: its
solutions are global and unique; it has a simple geometric
interpretation; and it does not depend on the dimensionality
of the input space. And it has been considered for open set
recognition before.

3.1 SVM Approches to Open Set Recognition
The 1-class SVM introduced by Schölkopf et al. [19] adapts
the familiar SVM methodology to the open set recognition
problem. With the absence of a second class in the training
data, the origin defined by the kernel function serves as the
only member of a “second class”. The goal then becomes to
find the best margin with respect to the origin. The resulting
function f after training takes the value +1 in a region
capturing most of the training data points, and �1 elsewhere.

Let p(x) be the probability density function estimated from
the training data {x1, x2, . . . , xm

| x
i

2 X}, where X is a
single class. A kernel function  : X ! H transforms the

training data into a different space. To separate the training
data from the origin, the algorithm solves the following
quadratic programming problem for w and ⇢ to learn f :

min
1

2

kwk2 +

1

⌫m

l

X

i=1

⇠
i

� ⇢ (7)

subject to

(w · (x
i

)) � ⇢� ⇠
i

i = 1, 2, . . . ,m ⇠
i

� 0 (8)

where ⇢ is an offset that parameterizes the hyperplane in
the feature space defined by the kernel  , and ⇠

i

are slack
variables. The kernel function  impacts density estimation
and smoothness. The regularization parameter ⌫ 2 (0, 1]

controls the trade-off between training classification accuracy
and the smoothness term kw k, and also impacts the choice
and number of support vectors. In the 1-class SVM, p(x)

is cut by the margin plane minimizing Eq. 7 and satisfying
Eq. 8. Regions of p(x) above the margin plane define positive
classification and capture most of the training data. As some
researchers have pointed out in the literature [20], the 1-class
SVM does not provide particularly good generalization or
specialization ability, which has limited its use.

While not as much of an issue for binary SVMs, using
Radial Basis Function (RBF) kernels, especially with a large
�, can also lead to over specialization. This can occur when
“abusing” a 1-class SVM by performing grid search over the
parameters and then testing with all available positive and
negative examples for a given data set. While still formally
a 1-class SVM, since only positive data is used for fitting,
the optimization of class parameters to avoid negative training
examples from the entire data set is not appropriate.

The 1-class SVM has received some (albeit limited) atten-
tion in the computer vision literature – mostly in the areas
of image retrieval and face recognition. The application of 1-
class SVMs to problems in computer vision was first made by
Chen et al. [21] a decade ago. For binary classification, equal
treatment is usually given to positive and negative training
examples. However, Chen et al. argue that for image retrieval,
while it is reasonable to assume that positive training examples
cluster in a certain way, the same cannot be said about negative
examples, since they can belong to any class. Thus, for an open
set problem, it seems natural to consider a 1-class SVM, which
is trained using only positive examples for a target class. The
feasibility of this approach was shown by Chen et al. [21] (and
in subsequent works [22] [23]), but with a caveat: kernel and
parameter selection. Zhou and Huang note [20] that RBF and
other Gaussian kernels are commonly used for 1-class SVMs,
often leading to an “over-fitting” of the training data, with
kernel parameters selected in an ad hoc manner, resulting in
an overall lack of generalization to many classes. We believe
the lack of generalization and specialization, combined with
the common practice of closed set testing, are the primary
reasons that the 1-class SVM did not gain much traction in
vision.

Detection, as noted in the introduction, is an important open
set problem, and several 1-class SVM techniques have been
proposed to address it in that context. An interesting approach
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was presented by Hongliang et al. [24], where 1-class SVMs
are used for face detection. By choosing to optimize the data
used to train a 1-class SVM through subset selection and
inclusion of negative examples as positive, they improved the
generalization. This partially addresses the concerns of Zhou
and Huang [20] at the training stage, but is logically incon-
sistent with no theoretical support. Cevikalp and Triggs [25]
used a slab approach to define the boundaries around positive
data, and then applied a 1-class SVM as a second stage
filtering of false positives for object detection. Using a 1-class
SVM trained with samples from the positive class and a few
outlier cases, Wu and Ye [26] attempt to maximize the margin
between the positive volume defined by a Gaussian kernel and
the outliers for the task of novelty detection. This situation
is similar to the approach proposed in this paper, with the
following key differences:

• Our training data consists of a larger sampling of known
data, instead of just a few outlier cases

• We consider a balanced risk formulation after SVM
training

• We pursue a linear kernel approach that applies to both
the 1-class and binary SVM

Beyond computer vision, 1-class SVMs have been consid-
ered in several other areas within pattern recognition, often
implicitly to address open set recognition but without formal
definitions of that problem. One of the earliest and best works
is that of Manevitz and Yousef [27], which considers the
problem of document classification. Using a 1-class SVM
and a novel variation based on more strict outlier detection,
the authors show high levels of classification accuracy on a
standard document classification data set (Reuters). Manevitz
and Yousef, like Zhou and Huang [20], point out that accuracy
is quite sensitive to the choice of kernel and parameters, which
they note is not well understood for this problem. In a similar
vein, our own work [28] has used 1-class SVMs for an open
set analysis of literary style.

The field of speech processing has also considered 1-class
SVMs for problems with unknown classes. In Shen and Yang’s
work [29], a novel data description kernel based on the 1-class
SVM is developed for text-dependent speaker verification.
Kadri et al. [30] successfully apply 1-class SVMs to audio
stream segmentation to overcome the problem of overlapping
speech and very short speaker changes by maximizing the
generalized likelihood ratio with respect to any probability dis-
tribution of the speech windows. Rossignol and Pietquin [31]
use a 1-class SVM approach for audio segmentation in the
context of overlapping speech. In a follow-up work to [30],
Rabaoui et al. [32] move beyond stream segmentation to
consider speech classification for recognition tasks.

While the 1-class SVM is specifically designed for the open
set problem, the potential of the binary SVM for this problem
should not be neglected. Specifically, when a classifier is
trained with positive samples from one class, and negative
samples from multiple classes (as is common in detection), it is
a valid solution for open set recognition. Binary SVMs attempt
to learn a margin that maximizes the separation between two
classes. Let w be a normal vector to a hyperplane. To separate

the data in the linear binary case (which we consider in
this article), the algorithm solves the following optimization
problem:

min
1

2

||w||2 (9)

subject to
y

i

(w ⇤ x
i

+ b) � 1,8
i

(10)

where x
i

is the i-th training example from the data
{x1, x2, . . . , xm

| x
i

2 X}, where X contains positive and
negative samples, and y

i

2 {�1,+1} is, for the i-th training
example, the correct output label.

Revisiting binary SVMs for detection tasks, Malisiewicz et
al. [33] note that a large ensemble of classifiers for a particular
class trained with a single positive example and millions of
negative examples yields surprisingly good generalization. In
this article, we look at specific instances where more limited
samplings of training data are assumed to be available, espe-
cially with respect to the known classes, where an approach
like [33] cannot easily be applied.

Several binary SVM-like formulations should also be men-
tioned. Like our algorithm, a few approaches can be found
that make use of multiple hyperplanes [34], [35], but not in
the context of open set recognition. With a variant of the hinge
loss function, Bartlett and Wegkamp [36] introduce a form
of classification with a reject option. The reject option is a
third decision for a binary classifier, expressing doubt when
the conditional probability for a label of an observation is
close to chance. To implement such a reject option, Bartlett
and Wegkamp describe a construction (somewhat akin to our
own fix for the problem of overgeneralization) that uses a
threshold to mark an ambiguous decision space. However, the
notion of rejection here is introduced to address the problem
of uncertainty with respect to specific samples – not to reject
samples that are not from the class of interest.

3.2 Other Approches to Open Set Recognition
Outside of the strict SVM framework, there are several other
approaches that can apply to the open set problem, though they
do not specifically address it. Recently, the vision community
has produced some efforts to deal with the expressiveness and
learnability of object models as well as the need for increasing
amounts of training data [37]. Indeed, some work has been
introduced to address the problem of object classification
when training and test classes are disjoint (that is, no training
examples of the target classes are available). In this direc-
tion, researchers have explored knowledge transfer for object
class recognition such as: hierarchical structure of the object
class space imposed by a general-to-specific ordering [38];
an intermediate layer of descriptive attributes to represent
object classes [39]; and direct similarity computations between
known object classes [40]. In the machine learning literature
there is also some work in this direction such as zero-
shot [41] and one-shot [42] learning techniques. To deal with
a classification problem for which no training data is available
for some classes, all of these approaches need to introduce a
coupling between known and unknown classes. According to
Lampert et al. [39], given that training data for the unobserved
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classes is not available, this coupling cannot be learned from
samples and often needs to be inserted into the system by
human effort.

It is useful to point out the differences between these types
of approaches and the one we discuss in this article. In the
open set recognition problem, we have training samples for
the class of interest and samples for only some of the negative
classes. However, in our solution to this problem, there is no
need for any coupling between known and unknown classes,
neither is any human effort required. Some of these above
approaches have formal definitions, but without constraints on
smoothness or data accuracy. It should be possible to develop a
formalization that combines the related definition for open set
recognition with categories, which would formalize the open
set variations of these problems.

Finally, the open set recognition problem we consider in
this article is also different from general unsupervised and
semi-supervised learning techniques (described in [43], [44]).
Common unsupervised techniques (such as clustering) do
not address the formal definition of the open set problem,
which is a more precise labeling than just an identification
of groups with similar appearance within a large collection
of images [45]. We want to make full use of the available
training examples that we have. In addition, semi-supervised
learning, which aims at the development of techniques to take
advantage of both labeled and unlabeled samples [45], also
does not apply to our problem since we are not propagating
labels from the known samples to the unknown ones. In fact,
our objective is to minimize the total recognition error (Eq. 5)
for the class of interest as we discussed in Sec. 2. Any solution
to the open set recognition problem could be applied as a tool
in semi-supervised learning, but the criterion for evaluation
might be significantly different.

4 INTRODUCING THE 1-VS-SET MACHINE

Our initial approach for the open set problem is based on
a new variant of SVM that we call the 1-vs-Set Machine.
As we described in Sec. 2, the risk minimization inherent
in solving the open set problem involves a minimization of
the positive labeled region to address open space risk (reflect-
ing overgeneralization) combined with margin constraints to
minimize empirical risk (reflecting overspecialization). In this
article, we introduce a formulation with a linear kernel that
applies to both 1-class and binary SVMs. Since the open set
recognition problem is directly related to human cognition,
arguments can be made in favor of linear kernels as an
idealized discriminator with biological grounding [46], [47].
Moreover, in our experience, linear kernels produce better
results than non-linear kernels for the same open set data (we
show this in Sec. 5).

The initial definitions of the 1-class SVM were based on
RBF kernels, but multiple works can be found [27], [48] that
use a 1-class SVM with linear kernels. Once the equations for
the 1-class SVM are defined, as in Sec. 3.1, the minimization
problem is still well defined for a linear kernel. Intuitively,
1-class linear SVMs can be viewed as taking all positive data,
finding the plane that just touches the support vectors and has

the origin on the opposite side of the plane from the training
data. For binary SVMs, the linear kernel is a typical choice,
and is often used for the open set problem of detection [3],
[33]. Here we describe the details of the 1-vs-Set algorithm.

4.1 Formalization of Risk for Linear Kernels
The first step in solving the optimization problem is to define
a computationally tractable open space risk term. Our open
set concept suggests that there is risk from labeling points far
from the positive samples. As mentioned in Sec. 2, one way
to look at this is in terms of ratios of Lebesgue measures.
But computing RO(f) for a given f may be intractable. We
start with an example to highlight the general issues, but since
our goal is just to minimize risk, we are able to find another
form such that we minimize RO(f) without ever explicitly
computing it.

As a first approximation for open space risk, which we call
shell-modeled risk, we take a large ball around the training
samples, and an even larger ball around that one and consider
anything between the two balls to be “open space.” More
formally, let S

y

be a ball of radius r
y

containing the training
data, and without loss of generality, let it be oriented such that
all positive training samples for class y are in the upper half of
the ball with h as the associated upper half-space such that the
linear SVM defines f(x) = 1 when x 2 h, and f(x) = 0 when
not. Let S

o

be a ball of radius r
o

with the same center as S
y

and let r
o

� r
y

. Shell-modeled open space S is thus the shell
S

o

�S
y

, for an arbitrarily large r
o

. Recalling S = S
o

�S
y

, we
can formalize the shell-modeled risk RS

h

for the half-space h
intersected with the shell S as:

RS
h

(f) =

R

S f(x)dx
R

S

o

f(x)dx
=

R

S

o

\h

dx�
R

S

y

\h

dx
R

S

o

\h

dx

= 1�
R

S

y

\h

dx
R

S

o

\h

dx
� 1�

rd

y

rd

o

⇡ 1 (11)

We emphasize that for traditional linear kernels, labeling a
half-space positive presents a significant risk of the unknown.
We can consider other models to further lower the risk. The
next simplest model, adding only one free parameter to the
classic linear kernel, is to consider the piecewise constant
f(x) to be positive only in the space between two parallel
hyperplanes. Consider a slab with fixed thickness �, i.e. the
space between two parallel hyperplanes separated by distance
�. Assume that the slab does not contain the center of balls
S

o

and S
y

. It was shown by Lévy and Pellegrino [49] that
the relative measure of such a slab compared to the measure
of a d-dimensional ball goes to zero as the radius grows.
Thus, the slab’s d-dimensional shell-modeled open space risk
is zero. Therefore, in what follows, we consider this specific
slab model, but with additional refinements.

Since for all slabs with small �, the shell-modeled risk will
approach zero for large shells, a more refined model is desired
to differentiate between slabs. We can consider the risk for a
fixed but large shell size – in which case the thickness of the
slab is directly proportional to risk. However, we will also want
to include terms for open space closer to the training data. The
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Fig. 4. Example of linear 1-vs-Set Machine showing the (a) base slab for both the 1-class and binary formulations,
where the second class is only considered in the latter case (b) the generalization, and (c) the specialization operators.
Blue refers to generalization, red for specialization and gray for the base linear 1-vs-Set Machine.

refined model will use marginal-style penalties where possible,
and penalties related to ratios of Lebesgue measure within the
large shell when not.

We define the class of functions H for the 1-vs-Set linear
kernels in d-dimensions to be the slab between two parallel
d-dimensional hyperplanes (A and ⌦ introduced in Sec. 1).
We initialize the planes to just contain all positive training
data. We can generalize beyond the initial training data by
further separating the planes, or, we can specialize by moving
either of the planes, bringing them closer together. For a
given plane orientation, the open space risk is proportional to
the separation distance between the planes. Thus our initial
optimization starts by adjusting parameters based on plane
separation. In particular, we define the overgeneralization risk
as the expansion of plane distance: �⌦��

A

�

+ , where �
A

is the
marginal distance of the near plane, �⌦ is the marginal distance
of the far plane, and �+ is the separation needed to account
for all positive data. In a similar manner, we define risk for
overspecialization as �

+

�⌦��

A

. During the optimization, these
two terms are balanced with the empirical risk determined
by classifying the available training samples with respect to
the original margin. The decision to limit the growth based
on the spacing of the intra-class data is our initial solution
to balance overgeneralization risk from false positives if we
added large balls, with the need to generalize to avoid future
false negatives.

In the margin spaces !
A

around the near plane and !⌦

around the far plane, we allow user specified control with
parameters p

A

and p⌦ to weight the importance of those
nearby open spaces. We provide for these additional refine-
ments (described in Sec. 4.2) because only the user can predict
the openness of the problem and the importance of local open
spaces. Combining the overgeneralization and overspecializa-
tion risk, along with any specified refinement, our open space
risk R

&

for a linear kernel slab model is:

R
&

=

�⌦ � �
A

�+
+

�+

�⌦ � �
A

+ p
A

!
A

+ p⌦!⌦ (12)

4.2 Solving the Optimization Problem and Refining
with Near and Far Plane Pressures
Given these definitions, we can numerically optimize the risk
within the space of a slab. The optimization process for the
1-class and binary machines is detailed in Algs. 1 and 2.

Algorithm 1 Linear 1-vs-Set Machine Risk Optimization
Require: Parameter �

r

; Optional parameters ↵,�
Require: Positive features ˆV = {v1, v2, . . . , vm

| v
i

2 P}
Require: Negative features ˆK = {k1, k2, . . . , kn

| k
i

2
K

j

, 1 < j  c}, for other known classes K1, . . . ,Kc

1: procedure TRAIN(�
r

,↵,�, ˆV , ˆK)
2: if 1-class then Train a linear SVM f using ˆV
3: else Train a linear SVM f using ˆV , ˆK
4: end if
5: for 8u

i

2 ˆV , ˆK do
6: Classify ⌘

i

= f(u
i

) . Generate decision scores
7: end for
8: ŝ = sort(⌘̂) . Sort decision scores
9: s

k

= min (8s
i

2 f(

ˆV ))

10: s
j

= max (8s
i

2 f(

ˆV ))

11: A = margin plane of f
12: ⌦ = plane parallel to A at s

j

13: Greedy Optimization iteratively move A to s
k+1 or

s
k�1, ⌦ to s

j�1 or s
j+1 to minimize R

&

(f)+�
r

RE , while
satisfying any constraints provided by ↵,� in Eq. 6.

14: end procedure

Fig. 4 illustrates this process. The base linear 1-vs-Set
machine, shown in Fig. 4(a), will just touch the extremes of
the positive examples. We then turn to greedy optimization to
move the planes simultaneously. If all negative training classes
are outside that slab, the overspecialization risk terms will
counteract the open space risk term and move the planes to
generalize, as in Fig. 4(b). If the negative examples overlap
the base slab, the overspecialization risk will be 1, and the
overgeneralization risk term and probably the empirical risk
term RE will require the planes to move inward, as in Fig. 4(c).

Alg. 1 will result in an optimization where each plane
is on a decision score from f . This is followed by a fine
tuning to place each plane in between the point isolated during
optimization and the next closest positive or negative point,
with a special case when the plane is at an extreme of the data.
We refine the plane positions, generalizing or specializing from
the margin between the closest data and the plane based on
parameterized “pressures” p

A

and p⌦ that control how far to
move the plane between the decision scores. If a decision score
is the extreme, then we cannot really define a margin-based



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, OCTOBER 2012 10

Algorithm 2 Linear 1-vs-Set Machine Plane Refinement
Require: Linear SVM f trained in Alg. 1
Require: Planes A and ⌦ from Alg. 1
Require: Near and far plane pressures p

A

and p⌦

Require: Counts of positive and negative features m, n
Require: Sorted decision scores ŝ

1: procedure REFINE(f, A,⌦, p
A

, p⌦, m, n, ŝ)
2: Let i be the index of decision score s

i

touching A
3: if i > 0 then Shift A to s

i

(

1
2 � p

A

) + s
i�1(pA

� 1
2 )

4: else Shift A to s0 � p
A

�+ . No Margin, just
generalize

5: end if
6: Let j be the index of decision score s

j

touching ⌦
7: if j < (m+n) then Shift ⌦ to s

j

(p⌦� 1
2 )+s

j+1(
1
2�

p⌦)

8: else Shift ⌦ to s
m+n

+ p⌦�+ . No Margin, just
generalize

9: end if
10: end procedure

Algorithm 3 1-vs-Set Machine Prediction
Require: Test feature vector t

x

Require: Linear SVM f trained in Alg. 1
Require: Planes A and ⌦ from Alg. 2

1: function PREDICT(t
x

, f, A,⌦)
2: if (A  f(t

x

) and f(t
x

)  ⌦) then Return +1
3: else Return -1
4: end if
5: end function

refinement. This is a relatively common case for ⌦. When
this occurs, we limit the generalization to be the user-specified
pressure times the positive data width �+. The procedure for
using pressures to refine positions is detailed in Alg. 2.

The parameterized pressures impact how much specializa-
tion versus generalization to apply. When considering the risk
from a large slab we note that the near plane is likely to have
any unknown negative data impinge on or near the positive
boundary. For the far plane, it is more likely that added positive
data will be slightly beyond the existing data, while negatives
may not be so close. Thus we provide separate pressures so
users may specialize on the near plane while generalizing on
the far plane. In our experiments, we typically had better
results after applying Algs. 1 and 2 when the near plane
specialized with respect to the normal SVM margin, while
the far plane generalized from the initial optimization result.
We note, however, that this is partially just semantics as any
position of the far plane is really a specialization with respect
to a standard SVM, which could be viewed as a “far plane”
at infinity. When addressing open set problems, the risk of the
unknown is reduced by specializing the slab to be closer to
the positive examples.

Finally, from the learned model f , and the refined planes
A and ⌦, any test vector t

x

can be classified using Alg 3. In
the software implementation, we sort the distances and search
from the base position to optimize R

&

(f) + �
r

RE . The code

also supports setting fixed recall or precision, which is easy to
implement given the explicit optimization process that satisfies
both Def. 1 and Eq. 6. Since we are using an extension of the
LIBSVM [50] library and sorting, our implementation is non-
optimized, but the overall complexity of the linear 1-vs-Set
machine can be made O(n) for n data items by using the
ideas of Joachims in [51], and simple selection to find the
points close to the near and far planes.

5 EXPERIMENTAL ANALYSIS

An important goal of our experiments is to highlight the
radically different nature of data sets once they are recontextu-
alized to reflect an open set problem. Torralba and Efros have
recently noted that “Indeed, some datasets, that started out as
data capture efforts aimed at representing the visual world,
have become closed worlds unto themselves” [3]. They go on
to analyze the various biases that exist in popular data sets,
which are easily learned and leveraged to inflate recognition
accuracies in a closed set scenario. By considering these same
sets as open set problems in a cross-data context, we can
directly address the problem of negative set bias (what the
data set considers to be “the rest of the world” [3]). Here we
propose testing scenarios that are more aligned with real world
scenarios where we do not have knowledge of all classes.

For the object recognition experiments presented in Sec. 5.1,
we make use of two different feature approaches. The first
approach is the popular Histogram of Oriented Gradients
(HOG) [4] descriptor, which is commonly used for detection
problems. Applying the standard procedure described by Dalal
and Triggs, we produced a 3,780-dimension feature vector for
each image considered in our experiments below. In the second
approach, the underlying features used for classification are
generated by extracting points of interest (PoIs) from the
images using Difference of Gaussians as proposed in [52],
and then computing an LBP-like [53] feature descriptor in
a window around each detected PoI. Feature vectors are
composed of 59-dimension histogram bins that summarize the
feature descriptor information for each image.

For the face verification experiments presented in Sec. 5.2,
we also make use of two different feature approaches. The first
approach is the same LBP-like descriptor used for the object
recognition experiments, but applied exactly as described for
faces in Sapkota et al. [53]. This results in 3,776-dimension
histogram bins that are used as feature vectors for learning.
The second approach is the common Gabor feature, which
has been shown to produce very good results for face verifi-
cation [54]. Applying the feature process described by Pinto
et al. [54], we generate 86,400-dimension feature vectors.

Open set recognition presents a couple of new challenges
with respect to evaluation. Specifically, we need to address the
choice of which statistic to evaluate classification performance,
as well as the organization of the data sets. This leads us
to a few procedures that are not commonly used in object
recognition and face verification. Our experiments below con-
sider several aspects of classification, including the statistical
significance of the 1-vs-Set machine’s results, an assessment
of the parameter space defined by p

A

and p⌦, and the impact
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TABLE 2
Top half: detailed comparison between all of the different classifiers for the HOG features over the open universe of

88 classes. Bottom half: summary comparisons between the 1-vs-Set Machines and all other classifiers for the
HOG features over the open universe of 212 classes, and the LBP-like features for both open universes. A ** or ++

means the results from testing H0 (the F-measure of the Alg. on the row is lower than that of the Alg. on the column)
were statistically significant at p = 0.01, * or + means p = 0.05. The * symbol indicates the 1-vs-Set Machine is

significantly better in F-measure, while + indicates a baseline machine is significantly better. Dashes indicate no
statistical significance, and a gray cell means no test was performed (a machine versus itself).

2-tailed paired t-test binary 1-vs-Set binary linear binary RBF 1-class 1-vs-Set 1-class linear 1-class RBF
binary 1-vs-Set (HOG 88) ** ** ** ** **
binary linear (HOG 88) — — ++ ++ ++
binary RBF (HOG 88) — ++ ++ ++ ++
1-class 1-vs-Set (HOG 88) — — — ** —
1-class linear (HOG 88) — — — — —
1-class RBF (HOG 88) — — — — ++
binary 1-vs-Set (HOG 212) ** * ** ** **
1-class 1-vs-Set (HOG 212) — — — — *
binary 1-vs-Set (LBP-like 88) ** ** ** ** **
1-class 1-vs-Set (LBP-like 88) — — — ** —
binary 1-vs-Set (LBP-like 212) * — ** ** **
1-class 1-vs-Set (LBP-like 212) — — — ** —

of problem openness on classification performance. All 1-vs-
Set machines in these experiments follow the most general
optimization of Eq. 5 where �

r

= 1, and were not trained with
explicit constraints (In Eq. 6, ↵ = 0 and � = 1). The near and
far plane pressures are set at default values of p

A

= 1.6 and
p⌦ = 4 for all experiments (except the one where we assess
the impact of changing these parameters) to provide an extra
measure of generalization.

Concerning statistics, accuracy is a natural choice for eval-
uating binary decision classifiers. Simply defined, accuracy
refers to the correctly classified samples (true positives TP
and true negatives TN ) out of all of the classification decisions
(TP , TN , false positives FP , and false negatives FN ).

Accuracy =

TP + TN

TP + TN + FP + FN
(13)

Similarly, class averaged accuracy summarizes accuracies
across all c classes for a given problem:

Class Avg. Acc. =

1

c

c

X

i=1

TP
i

+ TN
i

TP
i

+ TN
i

+ FP
i

+ FN
i

(14)

Class averaged accuracy cannot be used for open set recogni-
tion because the total number of classes c is always undefined.
However, the typical accuracy measure of Eq. 13 can, but
it tends to underemphasize the distinction between correct
positive and negative classifications. Remember – we are
primarily interested in identifying a small number of positive
samples out of a much larger pool of negatives. To highlight
this point, consider a case where a classifier returns one
true positive out of 100 positive test samples, and zero false
positives out of 100,000 negative test samples. This classifier
is 99.9% accurate on this test – even though it is essentially
a “no” classifier. For this reason, recall and precision are a
common alternative.

Recall refers to the amount of correctly classified positive
examples with respect to all the available positive examples:

TP

TP+FN

. Precision refers to the amount of correctly classified
positive examples with respect to all of the false and true
positives: TP

TP+FP

. If we consider precision and recall for
the task of comparing different classifiers, we encounter the
problem of an “apples to oranges” comparison, where a
collection of statistics not fixed to a specific precision or recall
are present. For example, for the same training and testing
data, the 1-vs-Set machine might produce a recall of 75% at
a precision of 32%, while a binary SVM produces a recall
of 62% at a precision of 25%. While ad hoc thresholding
could be applied to the decision scores to produce a precision-
recall curve, a better way to resolve this issue is to use
F-measure, which provides us with a consistent point of
comparison across inconsistent precision and recall numbers.
In information retrieval and machine learning, F-measure is
applied as a combination of precision and recall given by their
harmonic mean:

F-measure = 2⇥ Precision⇥ Recall

Precision + Recall

(15)

5.1 An Evaluation of Object Recognition
The data we consider for open set object recognition follows
a cross-data set methodology adapted from [3]. For training,
we choose all classes from the Caltech 256 set. For testing,
we choose images for the positive class from Caltech 256, but
for the negative classes, choose images from ImageNet [55].
Despite the bias within Caltech 256, we wanted to ensure
some consistency between training and testing samples for the
positive class, while attempting to generalize or specialize to
the negatives from ImageNet based on a limited sampling of
negatives from Caltech 256. While we have a sense of what
our positives are during training, there is no way to know
a priori if positive classes across data sets are consistent.
However, negatives are definitely negative, thus we should
be able to handle any examples from any data set based
on our optimization. From this data, we construct two “open
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(b) Accuracy

Fig. 5. A comparison between the 1-vs-Set Machine and typical SVMs with a linear kernel using two different statistics:
F-measure (a) and Accuracy (b). These plots represent detail from the open universe of 88 classes with HOG features
test found in Table 2. The classes shown here correspond to the top 25 for the binary 1-vs-Set Machine ranked by
F-measure. Error bars reflect standard error. In every case shown, the binary 1-vs-Set Machine produces a higher
F-measure and accuracy score compared to a binary SVM. The 1-class 1-vs-Set Machine shows more modest gains.
In this very difficult open set scenario, accuracy places more emphasis on correct negative classification instances,
where F-measure provides a more meaningful balance between correct positive and negative classification instances.

universes” of different sizes, allowing us to vary the training
and testing data, which is somewhat constrained by the number
of images provided by both data sets for the same classes. The
first open universe consists of 88 classes selected at random,
where we choose one class as positive, n classes as open set
training data or binary negatives (where n varies depending on
the experiment), and 87 classes as negatives for testing. The
second, more open universe, consists of 212 classes selected
at random, where we choose one class as positive, n classes
as open set training or binary negatives, and 211 classes as

negatives for testing.

We follow a multiple trial randomized testing procedure that
selects different training, open set training, and testing sets for
each experimental trial. This is done to verify consistency in
the reported results across numerous trials, thus limiting any
misleading impressions outliers might give for a single test.
We cycle through all of the classes five times, treating each
class positively once per iteration. The individual training and
testing sample breakdowns vary as a function of experiment,
and are noted below as we describe the individual tests. To
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ensure a fair comparison, the 1-class 1-vs-Set machine and
all of the binary classifiers are trained with the exact same
positive and negative examples. The 1-class machines use a
default ⌫ parameter of 0.5, the binary machines use a default
C parameter of 1, and machines with an RBF kernel use a
default � parameter of one divided by the number of features
(all LIBSVM default settings). These tests represent a total
of 532,400 images for the open universe of 88 classes, and
13,610,400 images for the open universe of 212 classes, in
different combinations across all of the randomized tests.

Our primary goal is to establish, in a rigorous statistical
manner, the advantage of the 1-class and binary 1-vs-Set
machines over typical SVM classifiers for open set recognition
problems. We do this by applying a 2-tailed paired t-test [56]
over all of the results for the classes from each of the open
worlds and for each of our two feature sets to generate
summary statistics. The t-test allows us to determine if two sets
of classification results differ from each other in a significant
way. The resulting p-values are assessed at the 0.05 confidence
level (95% confidence). Our null hypothesis H0 states the F-
measures from the first set of classification results are lower
than that of the second set. We reject H0 when the p-value is
less than 0.05. We also note cases where p is less than 0.01.

For the open universe test of 88 classes with both the HOG
and LBP-like features, we train on 70 positive images and 14
negative images each from five other classes (approximately
5% of the available classes), and test on 30 positive images
and 435 negative images across all the negative classes. For
the more difficult open world of 212 classes, we train on 30
positive images and 5 negative images each from six other
classes (approximately 3% of the available classes), and test
on 30 positive images and 6,330 negative images across all
the negative classes.

The results of these statistical tests are presented in Table 2.
In a direct comparison with other machines utilizing a linear
kernel, the results for the 1-class and binary 1-vs-Set machines
are statistically significant: the null hypothesis is rejected in
all but a single case. Even when we move to a cross-kernel
comparison with typical machines utilizing RBF kernels, the
binary 1-vs-Set machine produces better results that are statis-
tically significant in all but a single case. Although this is an
“apples to oranges” comparison, RBF kernels are an obvious
alternative to any machine making use of a linear kernel on
the exact same data, thus we include these results. We can
conclude that for open set recognition problems, the 1-vs-Set
machine is a suitable alternative to typical SVM classifiers.

In the next series of experiments, we break-out detail from
the 88-class open universe set with HOG features to look
at specific aspects affecting classification. First, the reader
might be interested in the actual F-measures outside of the
statistical summary presented above. Fig. 5(a) shows the F-
measures for the top 25 classes ranked by binary 1-vs-Set
machine performance. The binary SVM with a linear kernel
is also plotted as a baseline comparison for the same classes.
In every case shown, the binary 1-vs-Set machine is able to
achieve a higher F-measure than the typical binary SVM by
solving the constrained minimization problem over the exact
same training data. The 1-class 1-vs-Set machine also shows
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Fig. 6. Examples of the near and far plane pressure
parameter space and corresponding F-measures when
one of the two parameters is fixed at our selected default.
F-measure in this plot is calculated over all of the classes
in the open world of 88 classes with HOG features. Notice
how movement on the near and far planes during Algs. 1
and 2 makes a difference in the resulting F-measures
over the test data. Importantly, we see that the addition
of a second plane ⌦ has an impact on recognition perfor-
mance.

a gain in F-measure, albeit at far more modest intervals for
these particular classes. However, the 1-class 1-vs-Set machine
should not be neglected: for 27 of the 88 classes, it produces
better F-measures than the binary 1-vs-Set machine. Compared
to published results on the typical closed set testing scenarios
for the underlying data sets, these F-measures might seem
low, but one must remember that this experiment is far more
difficult: both machines saw only 5% of the total classes during
training, and all of the classes during testing. By comparison,
the accuracy numbers shown in Fig. 5(b) for the same classes
are much higher. Accuracy places more emphasis on correct
negative classification instances in large open set scenarios.

Next we turn to an assessment of the parameter space
defined by the near pressure p

A

and far pressure p⌦ described
in Sec. 4.2. To analyze our results in a broader context, F-
measure for this experiment considers all of the true positives,
false negatives and false positives across all classes from a
series of randomized tests, as opposed to just those from a
single class as we did for the experiments above. Using the
88-class open universe set with HOG features, we searched
the parameter space using binary 1-vs-Set machines to gain a
better understanding of the impact of plane movement. Plotting
portions of this data around our default parameters of p

A

= 1.6
and p⌦ = 4 (Fig. 6), we can see that movement on the near
and far planes during training is indeed affecting the results
achieved during testing. Of particular interest is the impact
of moving the second plane ⌦ added by our algorithm (blue
curve in Fig. 6), which limits false positives in what was a
positive half-space. A bit too much generalization from the
plane established by Alg. 1 (point 7 on the x-axis of the blue
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Fig. 7. An assessment of F-measure as a function of
openness (growing from left to right) for a collection of
binary classifiers. F-measure in this plot is calculated over
all of the classes in the open universe of 88 classes with
HOG features. As expected, all three machines decrease
in accuracy as the universe grows to be more open. Even
in the most open setting (82%), the 1-vs-Set Machine
yields 8,129 fewer false positives compared to the binary
SVM with a linear kernel, and 10,377 fewer false positives
compared to the binary SVM with an RBF kernel. All 1-
vs-Set Machine results are significantly better at a 95%
confidence interval.

curve in Fig. 6) can cause a dip in F-measure.
Finally, we consider the impact of openness on F-measure.

Intuitively, when more classes are available during training, we
expect that the resulting classifiers should be more accurate.
And this is exactly what we observe in practice. For the curves
shown in Fig. 7, we chose 60 images as positive testing data
for each class, and varied the openness of the test from 42%
(30 negative classes seen during training) to 82% (3 negative
classes seen during training). Testing remained constant at 30
positive images and 435 negative images. Again, F-measure
for this experiment considers all of the true positives, false
negatives and false positives across all classes from a series
of tests. All three binary classifiers decrease in accuracy as
the world grows to be more open. However, even when just
a small number of classes are available during training, the
1-vs-Set machine is able to drastically reduce the number of
false positives compared to the other machines.

5.2 An Evaluation of Face Verification

We also analyze the task of face verification, where people are
the classes, with less obvious inter-class variations. We chose
to evaluate classes from another well-known and challenging
data set: Labeled Faces in the Wild (LFW) [43]. LFW (like
many verification sets) is traditionally used for image-pair
matching, which is really neither an open nor closed problem
based on the learning criteria of this article. However, we can
still define training and testing sets from it. The twelve people
with at least 50 images (providing sufficient training data) were
selected as gallery classes. For open set testing, we randomly

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5"

F"
m
ea
su
re
)

Binary"13vs3Set"Machine,"LBP3like" Binary"SVM,"LBP3like"
Binary"13vs3Set"Machine,"Gabor" Binary"SVM,"Gabor"

0% 24% 38% 46% 52%
openness

Fig. 8. Face verification results as a function of open-
ness (growing from left to right) for a collection of binary
classifiers and LBP-like and Gabor features. F-measure in
this plot is calculated over all of the classes in the subset
of LFW we consider. Notice that in closed set testing
(0%), there is not much difference between the 1-vs-Set
Machines and the typical binary classifiers. In all open
set cases, the 1-vs-Set machine results are significantly
better at a 95% confidence interval.

selected 82 “impostors” from other people in the LFW set,
yielding a total of 1,316 test images across all classes.

The impact of problem “openness” is also a very important
factor for face verification, where a benchmark test might not
reflect the performance of an algorithm over time as more peo-
ple attempt to verify. Our experiments evaluated this scenario,
starting with a completely closed world of twelve people, and
adding more impostors in each individual experiment. Once
again, we follow a five trial randomized testing procedure that
selects different training (35 positive and negative samples per
person) and testing sets (14 different test samples per person)
for each experiment. Galleries are represented by binary 1-vs-
Set machines and binary SVMs with linear kernels, which are
trained with the exact same positive and negative examples.
The closed set scenario for verification considers only the
twelve known people for both the gallery and the probes
(the test samples). The four subsequent experiments consider
different numbers of probe classes to vary openness from 24%
(30 probe classes) to 52% (94 probe classes). The gallery
remains fixed at twelve people. This is slightly different from
the experiments described for object recognition, where we
varied the number of training classes, but more consistent with
a critical analysis of typical face verification testing.

Fig. 8 shows a comparison between the binary 1-vs-Set
machine and binary SVM with a linear kernel across the
LBP-like and Gabor features. When the experiment is com-
pletely closed, the problem appears easy, with all machines
producing high F-measures that are similar. However, as the
problem grows to be more open, a large gap in F-measure
appears between the 1-vs-Set machine and the binary SVM.
Once experiments move beyond closed set testing protocols,
it quickly becomes clear that typical machines with strong
features are not always sufficient to address the open set
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aspect of the problem. This is particularly important for
face verification, which is used in real world authentication
applications. We also evaluated the statistical significance of
the 1-vs-Set machine’s results using the 2-tailed paired t-test.
In all open set cases, the results are significantly better at a
95% confidence interval.

6 DISCUSSION AND FUTURE WORK

By revisiting the ideas of the general recognition problem
and SVM-based recognition systems, we have gained a better
understanding of the challenges of the problem and the short-
comings of the most frequently used solutions. In an open
world, we cannot have knowledge of all classes, and it is
impossible for us to sample and train on every possible image
configuration for a class. Even if we could, with negatives
greatly outnumbering positives, choosing representative nega-
tive training examples for a binary or multi-class classifier is
problematic. The open set assumption changes how we must
evaluate what is a “solution” – the risk of unknown classes
must be accounted for without causing unforeseen errors.

With this in mind, we formalized the open set recog-
nition problem as a risk-minimizing constrained functional
optimization problem. As a first step towards a solution, we
introduced a novel “1-vs-Set Machine” as an extension of the
1-class and binary Support Vector Machines to better support
generalization and specialization in a manner that is consistent
with the open set problem definition. The experiments for
object recognition and face verification show that the 1-vs-
Set machine is highly effective at improving accuracy when
compared to 1-class and binary SVMs for the same problems.
Interested readers can download our source code for the 1-vs-
Set machine, as well the computed features for all experiments
from: http://www.metarecognition.com/openset/.

Torralba and Efros [3] point out the effect of the closed-
world assumption: a focus on beating the latest benchmark
reports on the newest data set. Many researchers in the vision
community have lost sight of the original purpose of these
data sets: recognizing the visual world. By reformulating the
recognition problem as open set recognition, we naturally
avoid over-training biases. An open set testing methodology
reduces the chance of data set bias because one cannot train
on most of the data. While leave-one-out cross-validation is
popular, the open set formulation suggests a leave-most-out
validation. By restructuring tests over existing data sets we
hope to encourage researchers to begin to address the more
natural open set form of the recognition problem. For instance,
our results on an open set reformulation of LFW may not be
as impressive as the closed set testing, but they highlight the
actual difficulty of unconstrained face verification.

The next step for this work is to extend our 1-vs-Set
machine model to RBF kernels, which have a bounded volume
that can also be adapted via generalization or specialization.
This includes exploring alternative kernel density estimators
outside of an SVM framework. Another future direction is
to optimize other parameters beyond open space risk and
empirical risk. The binary SVM bias term ⇢ and cost C are
natural choices. We emphasize that the 1-vs-Set machine is

only a first step towards an algorithm that is a truly suitable
solution for open set recognition. Specific learning approaches
that incorporate open set recognition into their fundamental
design (especially at the initial density estimation stage) are
of great interest.
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