
Supplemental Material: Measuring Human Perception to Improve Open
Set Recognition

1 Additional Details For the Psychophysical Study

1.1 Data Collection Process on Amazon Mechanical Turk
Here we provide some additional details about our data collection process, including screen shots for key steps. The data col-
lection application is very user-friendly. Built with Python and Flask in the back-end and distributed on Amazon Mechanical
Turk, the survey can be accessed simply using a web link.

Figure 1: Introductory page of each survey.

After a subject accesses the link, they first view an introductory page. This page includes following information:

1. Description, length and completion criteria. A brief overview about the survey, including the number of questions
contained in each survey and what a subject is supposed to do to accomplish it, as well as what happens when a subject
finishes answering all the questions.

1



2. Approval criteria and rejection criteria. In order to be approved, the subject needs to submit the survey code given at
the end of a survey, as well as answer at least 3 control questions out of 5 correctly. A submission will be rejected if any
of the following problems are present: (1) Failure to complete the survey. (2) Unable to provide a valid survey code.
(3) Multiple submissions of an identical survey code. (4) 3 or more control questions are incorrect.

3. Troubleshooting guidelines. Information on what to do if an error shows up on the website is provided.

Figure 2: Practice question of a survey.

After the subject reads the introduction, the website proceeds to the consent page, where the subject is provided the
information about the study, the purpose of the research, how long it takes to finish a survey, how to end a survey, how much
we pay for a survey, and the privacy policy. The subject must check a box at the bottom of this page to agree to participate.

Figure 3: The different surveys vary in difficulty. The question at the top of this figure is more difficult because of the
similarity between class cat and class fox; the question on the bottom of this figure is easier because of the large difference in
visual appearance between dogs and elephants.

2



The survey then moves to the directions page as shown in Fig. 1. This page has an overview of the format of the questions
that will appear in the survey, and it introduces the question format in detail: (1) showing the reference images in the top row
in the green box. (2) showing the six options for selection in the bottom row. (3) giving direction on how to make a selection
by either clicking on the buttons under an image or pressing a number key on a keyboard.

After the directions, the survey moves to a practice page that has a sample question (as shown in Fig. 2) to make sure
that the subject understands how to answer the questions. The survey will only move forward to the real questions after this
practice question is answered correctly.

For the actual data collection, 25 survey questions are presented to the subject, who will answer them as each question
appears. Among all the questions, there are easier questions and harder questions, as shown in Fig. 3. After all of the questions
are answered, a conclusion page will appear, and a survey code is provided for payment; a example of this is shown in Fig. 4

Figure 4: Conclusion page with the survey code and instruction on submitting the code for payment.

1.2 Class-Level Reaction Time Analysis
Here we provide all the box plots for the class-level RT distributions for the 40 known classes used in the behavioral exper-
iments. To understand these plots, consider the first one. In Fig. 6, the first figure shows the case when class 4 (cat) is used
as the host class (the reference class / known class) and paired with other classes, which means all RTs are collected for class
4 (cat) specifically. Although the maximum RTs when paring with different classes vary by quite a bit, we can tell from the
plot that the minimums, lower quartiles, and medians are rather close among all the class pairings. This observation indicates
that class level RT will not provide useful additional information for supervised machine learning training. The same is true
of the other 39 classes shown below. To make the figures easier to read and understand, Table 1 shows the mapping between
class index from ImageNet335 and the names of these classes.

1.3 Image Level Reaction Time Analysis
Going deeper, we also look at the RT at the sample level. In our data collection process, each class is paired with 40 classes
including itself, which means each image in the considered classes gets paired with multiple classes. The final RT used for
each image is the average of all recorded RT measurements across all of the classes it is paired with.

Considering there are thousands of individual images that have an associated RT value, we are not able to show the RT
variance for all classes for every single image. Here we randomly pick 4 images to show the image-level RT variance for each
class it is paired with in Figure 19 and Figure 20. From these plots we can see that the RT varies a lot when a single image is
paired with different classes. Thus we consider the difficulty for recognizing whether an image belongs to the reference class
(the class that is shown in the first row in the green box in each question) or not depends on not only the intrinsic features

Label Class Name Label Class Name Label Class Name Label Class Name Label Class Name
4 cat 5 black bear 10 giant panda 11 raccoon 55 magpie
73 butterfly 91 flower 108 sunglasses 114 headset 115 loud speaker

133 radiator 135 switch 141 organ 142 piano 144 drum
154 candle 155 spotlight 156 neck brace 162 scanner 163 car mirror
164 spider web 171 keyboard 172 crane 173 ski 202 coffee mug
205 barrel 206 bathtub 207 bucket 236 staff 237 drumstick
238 spindle 273 nest 274 curtain 314 fridge 315 curling iron
343 theatre 386 sweater 402 menu 403 bell pepper 410 gravel

Table 1: Label mapping for the class names of the 40 known classes.

3



Figure 5: Using class 4 and class 5 as the host class

4



Figure 6: Using class 10, 11 and 55 as the host class

5



Figure 7: Using class 73, 91 and 108 as the host class

6



Figure 8: Using class 114, 115 and 133 as the host class

7



Figure 9: Using class 141, 142 and 144 as the host class

8



Figure 10: Using class 155, 156 and 162 as the host class

9



Figure 11: Using class 135, 154 and 163 as the host class

10



Figure 12: Using class 164, 171 and 172 as the host class

11



Figure 13: Using class 202, 205 and 206 as the host class

12



Figure 14: Using class 236, 237 and 238 as the host class

13



Figure 15: Using class 173, 207 and 273 as the host class

14



Figure 16: Using class 274, 314 and 315 as the host class

15



Figure 17: Using class 286, 402 and 403 as the host class

16



Figure 18: Using class 343 and 410 as the host class

17



of an image, but also what class it is paired with. This is significant for visual recognition in computer vision, because the
training set captures those relative comparisons, and that is likely why these measurements are useful for supervised training.

Figure 19: Average Reaction Times (RT) by class when collecting data on class 10 (giant panda) image 10 and class 141
(organ) image 34.

18



Figure 20: Average Reaction Times (RT) by class when collecting data on class 155 (spotlight) image 081 and class 273
(nest) image 004.

19



2 Descriptions of Baseline Approaches.

2.1 Standalone Classifiers
For the experiments involving standalone classifiers, we used the features that are generated by MSD-Net [1] when trained
with the original Cross-Entropy loss on the ImageNet335 dataset. The SVM-based methods described below, as well as the
EVM algorithm, were not originally designed to apply to feature sets of high dimensionality. When we use the original
extracted features directly with these classifiers, the algorithms fail to converge due to the large number of dimensions. To
address this issue, we utilized the Principal Component Analysis (PCA) method to reduce the size of features. To be spe-
cific, we first standardized features by removing the mean and scaling to unit variance using a standard scaler from scikit-learn
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html). We then applied PCA to the standardized features such that the reduced features represented 99% of the original fea-
tures. For the PCA algorithm, we used the implementation in scikit-learn (https://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.IncrementalPCA.html?highlight=incremental+pca)
with a batch size of 512. Hyperparameters are set to implementation defaults unless otherwise mentioned.

To train the SVM, W-SVM, PI -SVM and EVM, we fit the reduced features to each algorithm and obtained trained
models. We then sent known samples with labels and unknown samples into the models, and obtained prediction scores.
Last, we applied thresholding to each score to decide whether a sample is known or unknown. The threshold was obtained by
calculating the median of predictions scores when passing the validation set through a trained model.

SVM [2] maps training samples into points in space so as to maximize the margin between different classes. It has
been used in many applications in computer vision including, but not limited to, image classification, handwritten charac-
ter recognition, and face recognition. Here we use the SVM implemented in scikit-learn and we apply the SGDClassifier
(https://scikit-learn.org/stable/modules/sgd.html?highlight=sgd) to our features for simplicity.
To be specific, we use the linear kernel with a C parameter of 1.

Weibull-Calibrated SVM (W-SVM) [3] introduces a Compact Abating Probability (CAP) model to tackle the OSR
problem. In the proposed CAP model, the probability of being associated with a class decreases in value when a point moves
from known to unknown space. Based on the CAP model, the authors propose a novel Weibull-calibrated SVM (W-SVM)
algorithm. The W-SVM utilizes the statistical Extreme Value Theory for score calibration with one-class and binary SVMs.
The code that is used for the W-SVM is from https://github.com/ljain2/libsvm-openset.

PI -SVM [4] utilizes the intuition that an algorithm should be able to reject a large portion of unknown samples during the
testing phase if known samples are accurately modeled during the training phase without overfitting. Based on this intuition,
the PI -SVM models positive training data with the statistical Extreme Value Theory to determine decision boundaries, and
it also uses a threshold-based strategy to generate classification results. The code that is used for the PI -SVM is from
https://github.com/ljain2/libsvm-openset.

EVM [5] is a theoretically sound open set classifier. It is inspired by the concept of support vectors in SVM, and is
modeled by measuring the distribution of sample half-distances relative to a reference point. During the training phase,
the EVM trains a one-vs-rest model for each known class; during the testing phase, it generates prediction scores for each
testing sample. The code used for the EVM is from https://github.com/prijatelj/vast/tree/massive_
memory_use. The EVM parameters used are as follows: tail size=1000, cover threshold=0.5, distance multiplier=1.0,
distance metric=cosine and chunk size=200.

2.2 Deep Learning-Based Methods
Researchers have been exploring deep learning-bases methods for OSR problems for several years and have come up with
different approaches. We compare our MSD-Net trained with the proposed psychophysical loss with the following methods:

OpenMax [6] is the first open set classifier that can be trained with a deep neural network. It utilizes the features produced
by a deep network to compute a Mean Activation Vector (MAV) and the distances for MAVs. Then it trains a Weibull model
using the MAVs and their corresponding distances. During the testing phase, the model produces a probability vector of
length n+ 1, where n is the number of known samples, and the last value in the vector indicates the probability for being an
unknown sample.

To reproduce OpenMax using our dataset, we chose the model that had the best performance (evaluated by top-1 validation
accuracy) while training MSD-Net with Cross-Entropy loss on the ImageNet335 dataset, and passed the training set and
testing set (both known and unknown) to the model to obtain features for each sample. Then we followed the pipeline
implemented in https://github.com/abhijitbendale/OSDN to calculate MAVs, distances of MAVs, and to train
the Weibull model. Lastly we used the trained Weibull model to test all of our samples. The class that has the largest
probability is considered to be the classification result.

20

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html?highlight=incremental+pca
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html?highlight=incremental+pca
https://scikit-learn.org/stable/modules/sgd.html?highlight=sgd
https://github.com/ljain2/libsvm-openset
https://github.com/ljain2/libsvm-openset
https://github.com/prijatelj/vast/tree/massive_memory_use
https://github.com/prijatelj/vast/tree/massive_memory_use
https://github.com/abhijitbendale/OSDN


OSRCI [7] generates samples that are close to training samples yet do not belong to any training class, using Generative
Adversarial Networks. It trains a network that can classify these generated images into an extra class; ideally, when tested
with unknown images, these unknown samples should be classified into the extra class.

We used the code publicly provided by the authors (https://github.com/lwneal/counterfactual-open-set)
and followed the instructions step-by-step to apply this method to our ImageNet335 data. Parameter-wise, we randomly gen-
erated 50 batches of fake images, where each batch contained 64 images, which made 3,200 fake images in total. The network
was trained for 200 epochs on a single GPU. After training, we evaluated the model with both known and unknown samples
in the testing set, deciding what class a sample belonged to by looking at the class that had the largest prediction score.

CROSR [8] uses latent representations for reconstruction to enhance a model’s ability to learn known features and separate
them from unknown samples. The method consists of a closed set classifier and an unknown detector, where the closed set
classifier directly uses the target labels, and the unknown detector uses a reconstructive latent representation together with
target labels.

We utilized the code from https://github.com/saketd403/CROSR to reproduce this method with our Ima-
geNet335 data. We train CROSR for 200 epochs on a single GPU with a batch size of 16 and image size of 32, with an initial
learning rate of 0.05, a momentum of 0.9, and a weight decay of 0.0005. After training, we found the best model by looking
at the top-1 validation accuracy, and used that model for testing. Similar to the original paper, we used thresholding on the
probability scores we obtained from testing samples to separate known and unknown samples; but instead of using a naive
threshold of 0.5, we used the median of the probability scores obtained by using the validation data.

CAC-OSR [9] is a distance-based loss that trains known classes to form clusters around anchored class centers in the
feature space, which makes it easier to distinguish known samples and unknown samples. It consists of a closed set classifier
(which can be any existing network), a non-trainable parameter C that represents a set of class center points, and a new layer
designed for the new loss.

Following the code provided at https://github.com/dimitymiller/cac-openset, we reproduce this method
with our ImageNet335 data. We trained the model for 200 epochs, with a batch size of 64, and image size of 64. After train-
ing, we found the best model by looking at the top-1 validation accuracy, and used that model for testing. We calculated the
median of the probability scores gained by the validation data, and used it as a threshold on the probability scores we obtained
from testing samples to separate known and unknown classes.

Psychophysical Performance Loss was introduced by Grieggs et al. [10] as a psychophysical loss formulation for training
artificial neural networks. In that work, behavioral experiments were conducted to collect human reaction time data associated
with the ability of reading in order to improve handwritten character recognition in historical documents. We call this loss the
“performance loss” in our experiments, and it is defined as:

LP (x) =
Rmax −Rx

Rmax
(1)

where Rmax is the maximum human RT across all of the human training data and Rx is the mean human RT of the current
image x. LP is then the image’s reaction time score normalized by Rmax to be within the range [0, 1]. Based on the dataset
described in Section III in the main paper, Rmax was found to be 28 seconds.

This loss is the psychophysical loss can be combined with cross-entropy loss in a weighted summation as follows:

L = LC + λLP (2)

where LC is the cross entropy loss and λ is the weight parameter for performance loss.
The performance loss leverages the information of the expected human reaction time versus the maximum RT to inform

the model of the sample’s difficulty for human classification. This relies on the assumptions that human RT is longer for
images that are more difficult to classify by the humans and that this difficulty should be shared between humans and the
model.

21

https://github.com/lwneal/counterfactual-open-set
https://github.com/saketd403/CROSR
https://github.com/dimitymiller/cac-openset


3 Additional Detail on Experimental Setups and Supplemental Results

3.1 Additional Detail on Reaction Time and Exit Strategy
Table 2 shows the cut-off thresholds that map bins of RT measurements to the MSD-Net exit indices, mentioned in Section
IV of the main paper. The maximum is obtained by finding the largest value of RT after removing the outliers.

Threshold QU1 QU2 QU3 QU4 Max
Percent Below 20% 40% 60% 80% 100%
Reaction Time 3.5720 4.9740 7.0156 11.601 27.572

Exit Index 0 1 2 3 4

Table 2: The cut-off thresholds for human RT for known samples. This table maps RT bins to the MSD-Net exit indices. The
minimum is set to 0, and the other 5 thresholds are the quintiles (QU). All the values for reaction time are in seconds.

Figure 21: Network architecture of MSD-Net [1] with 5 classifiers/exits.

Figure 21 shows the MSD-Net that has 5 classifiers/exits, and as mentioned in the main paper, we map the cut-off thresh-
olds to the 5 exits. (Figure adapted from Figure 2 in 21.)

22



Figure 22: Flowchart illustrating the detailed exit strategy. The top panel shows the exit strategy for unknown samples, and
bottom one shows the strategy for known samples. In both flowcharts, yellow blocks stand for exits where the conditions are
checked based on probability scores; green blocks mean the network makes a correct prediction, and red blocks mean the
network makes an incorrect prediction.

With the above exit strategy, we are able to obtain the number of samples that exit from each classifier.

Algorithm Seed Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Correct
Known

Exit 5 Incorrect
Known

Exit 5
Unknown

LossC 0 26518 1493 1418 1403 22910 87904 108662
1 63627 16207 8933 4654 8246 36719 95413
2 82784 17230 11179 5347 3090 20763 90814
3 43106 6922 4234 2780 16053 69579 101002
4 62669 16397 8409 3937 9067 43000 93024

LossC + LossP 0 44446 7188 3853 2817 16794 73548 100526
1 91774 20020 7073 5953 3335 23832 83008
2 68176 15473 7374 4173 8036 37891 93077
3 42712 6893 4716 2759 14970 64052 102931
4 69760 15569 6939 3873 7850 37319 95727

LossC + LossE 0 78477 19404 11870 7060 3918 12590 94961
1 84836 19423 9646 6269 3578 13629 92981
2 78640 19970 11210 7588 3560 10549 93830
3 84700 19036 9922 5787 3103 12117 93740
4 83144 19443 11006 6519 3629 11869 91177

LossC + LossP + LossE 0 83407 20274 10916 6401 3772 11115 90457
1 84046 18913 10464 6781 3642 11354 91923
2 80207 19961 10691 6502 3778 12420 92731
3 81406 18996 10960 6888 3381 10927 92195
4 80554 19484 11258 7029 3900 11484 92492

Table 3: Breakdown for exit status for all 4 loss formulations. Columns 3, 4, 5, 6 and 7 stand for the number of samples that
exit from each exit and are classified correctly into the known class they belong to, respectively. Column 8 stands for the
number of samples that exit from exit 5, but are classified into a wrong known class. Column 9 stands for the numbers of
samples that exit from exit 5 and are incorrectly classified as unknowns.

23



Algorithm Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Correct
Known

Exit 5 Incorrect
Known

Exit 5
Unknown

LossC 55741 11650 6835 3624 11873 51593 97783
LossC + LossP 63374 13029 5991 3915 10197 47328 95054
LossC + LossE 81959 19455 10731 6645 3558 12151 93338

LossC + LossP + LossE 81924 19526 10858 6720 3695 11460 91960

Table 4: Average exit status for all 4 loss formulations.

Table 3 shows the breakdown for each loss formulation and the number of samples that exit from each exit respectively,
by considering only maximum probability score and top-1 prediction, while Table 4 shows the average number for each exit
from all 5 seeds, rounded to the closest integer.

Figure 23: Statistics for each exit when testing the 4 different loss configurations with known samples.

Figure 23 illustrates the numbers reported in Table 4. We can tell from the figure that models trained with our exit loss
(green and red bars) have more samples that are classified into a known class and that exit from Exit 1, 2, 3 and 4, compared
to the two baseline models (blue and orange bars). Further, for models trained with exit loss, the number of samples that
are classified correctly (the first five x-axis points) form a distribution that is similar with the shape of the distribution of our
reaction time as shown in Figure 3 of the main paper. Models trained without exit loss do not form the same distribution,
because the number of samples that exit from the 5th exit is larger than the number of samples that exit from the 4th exit. This
indicates that our loss formulation forces a consistent behavior between human reaction time and machine learning models.
Furthermore, models trained with exit loss have much fewer samples that are classified into an incorrect known class, and
fewer samples classified as unknown at the end, which shows our loss formulation provides better decision boundaries for
OSR.

Table 5 shows the breakdown for the number of samples that exit from each exit respectively, by considering only maxi-
mum probability score, while Table 6 shows the average number for each exit from all 5 seeds, rounded to the closest integer.
At each exit, models trained with our exit loss have fewer samples that are incorrectly classified as known, and as a result, at
the end of the model, many more examples are classified correctly as unknown with our models.

24



Algorithm Seed Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Incorrect
Known

Exit 5 Correct
Unknown

LossC 0 16289 8569 6274 4598 2718 9616
1 15515 9827 6447 4149 2382 9744
2 14228 7813 7225 4970 2789 11039
3 16485 8891 5672 4582 2876 9558
4 11983 9151 7636 5013 3635 10646

LossC + LossP 0 15586 8712 7060 4872 2943 8891
1 15492 6674 3808 3313 1746 17034
2 15437 8328 6142 4780 2772 10605
3 16787 9721 5215 4099 2444 9798
4 14464 9171 5995 4370 2827 11237

LossC + LossE 0 10900 4619 3063 2338 1268 25879
1 11515 5000 2999 2450 1350 24753
2 10209 4923 2976 2241 1057 26661
3 10351 4642 3118 2287 1127 26542
4 10472 4294 2788 1964 1254 27295

LossC + LossP + LossE 0 11063 4699 2891 2112 990 26312
1 10271 4704 3014 2124 1140 26814
2 11186 4614 2919 2335 1147 25866
3 11381 4723 2816 2142 1056 25949
4 11170 4904 3258 2290 1030 25415

Table 5: Breakdown of results for exit status for all 4 loss formulations. Columns 3, 4, 5, 6 and 7 stand for the numbers of
samples that exit from each exit and are classified incorrectly as known, respectively. Column 7 stands for the numbers of
samples that are correctly classified as unknown.

Algorithm Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Incorrect
Known

Exit 5 Correct
Unknown

LossC 14900 8850 6651 4662 2880 10121
LossC + LossP 15553 8521 5644 4287 2546 11513
LossC + LossE 10689 4696 2989 2256 1211 26226

LossC + LossP + LossE 11014 4729 2980 2201 1073 26071

Table 6: Statistics for each exit when testing the 4 different loss configurations with unknown samples.

Figure 24: Statistics for each exit when testing the 4 different loss configurations with unknown samples.

25



3.2 Analysis of the Generalizability of Proposed Method
Our psychophysical loss function was originally designed for the MSD-Net architecture, but can be generalized to any deep
network that has multiple classifiers/exits in its architecture. To explore the generalizability of our loss, we modified a
simple deep network, ResNet18 [11], adding 5 classifiers as a proof-of-concept. Figure 25 shows the modified ResNet-18
architecture: we take the feature map after each convolutional block and feed those features into an average pooling layer and
a fully-connected layer. A SoftMax layer is then used to obtain probability scores at each exit point.

Figure 25: Network architecture of ResNet18 with the addition of 5 classifiers/exits.

In this way, we are able to train ResNet18 on ImageNet335 with exactly the same data partition and to use the same
training strategy used to train MSD-Net. Table 7 shows the breakdown results for 5 seeds for each model, while Table 8
summarizes the average results with 5 seeds.

Algorithm Seed Train Acc.
Top-1

Train Acc.
Top-3

Train Acc.
Top-5

Valid. Acc.
Top-1

Valid. Acc.
Top-3

Valid. Acc.
Top-5

LossC 0 74.60 85.93 89.81 60.79 72.12 76.97
1 74.88 86.56 90.23 60.97 72.38 77.58
2 75.14 86.51 90.12 61.39 73.11 77.97
3 76.03 87.00 90.51 61.27 72.70 77.72
4 75.14 86.70 90.27 61.52 72.85 78.06

LossC + LossP 0 74.37 86.04 89.95 60.94 72.46 77.37
1 74.63 86.24 89.92 60.84 72.37 77.40
2 75.11 86.59 90.16 60.80 72.57 77.71
3 75.15 86.61 90.36 60.73 72.62 77.67
4 75.49 86.90 90.35 60.99 73.00 77.74

LossC + LossP + LossE 0 75.46 86.80 90.22 61.42 73.13 78.01
1 76.02 87.40 90.94 61.90 73.36 78.04
2 75.19 86.62 90.27 62.25 73.42 78.24
3 75.15 86.41 90.28 61.24 73.07 77.80
4 76.23 87.22 90.53 60.68 72.59 77.77

LossC + LossE 0 74.62 86.08 89.84 60.36 72.19 77.15
1 73.79 85.69 89.38 59.61 71.40 76.69
2 74.44 85.98 89.72 61.16 72.35 77.57
3 74.71 86.41 89.95 61.30 72.69 78.09
4 75.28 86.59 90.23 61.06 72.42 77.57

Table 7: Breakdown of training and validation accuracy in percentage for ResNet-18 for 5 seeds. Bold numbers indicate the
model that performs the best on a metric among 5 seeds.

26



Algorithm Train Acc.
Top-1

Train Acc.
Top-3

Train Acc.
Top-5

Valid. Acc.
Top-1

Valid. Acc.
Top-3

Valid. Acc.
Top-5

LossC 75.16 86.54 90.19 61.19 72.63 77.66
LossC + LossP 74.95 86.48 90.15 60.86 72.60 77.58

LossC + LossP + LossE 75.61 86.89 90.45 61.50 73.11 77.97
LossC + LossE 74.57 86.15 89.82 60.61 72.21 77.42

Table 8: Average training and validation accuracy in percentage for ResNet-18 for 5 seeds. Bold numbers indicate the model
that performs the best on a metric.

Then we applied the same strategy to test these models: Table 9 shows the breakdown results for 5 seeds respectively,
while Table 10 shows the averaged results.

Algorithm Seed TP TN FP FN F-1 MCC Test Known
Acc. Top-1

Test Unknown
Acc

LossC 0 136874 12597 35470 199574 0.5380 -0.2202 22.0085 26.2071
1 140429 12425 35642 196019 0.5480 -0.2151 22.5096 25.8493
2 136966 13739 34328 199482 0.5395 -0.2043 22.8769 28.5830
3 136230 11810 36257 200218 0.5354 -0.2323 22.8847 24.5698
4 136495 12625 35442 199953 0.5370 -0.2206 22.7254 26.2654

LossC + LossP 0 2278 24034 24033 334170 0.0126 -0.6461 0.1697 50.0010
1 136476 12794 35273 199972 0.5371 -0.2183 22.4962 26.6170
2 136494 12983 35084 199954 0.5375 -0.2157 22.4656 27.0102
3 142010 12362 35705 194438 0.5524 -0.2128 22.7075 25.7182
4 139835 12140 35927 196613 0.5460 -0.2203 22.9542 25.2564

LossC + LossP
+LossE

0 136595 12474 35593 199853 0.5371 -0.2225 22.5973 25.9512

1 141098 11899 36168 195350 0.5493 -0.2210 23.6702 25.7550
2 137737 11818 36249 198711 0.5397 -0.2291 23.3700 25.5865
3 140340 12988 35079 196108 0.5483 -0.2076 22.7126 27.0206
4 139261 12405 35662 197187 0.5447 -0.2178 22.7994 25.8077

LossC + LossE 0 136336 12892 35175 200112 0.5368 -0.2173 22.2260 26.8208
1 138123 13377 34690 198325 0.5424 -0.2069 22.0548 27.8299
2 137736 12419 35648 198712 0.5403 -0.2208 22.1565 25.8368
3 139092 12828 35239 197356 0.5446 -0.2124 22.3470 26.6877
4 135248 12936 35131 201200 0.5337 -0.2190 21.8587 26.9124

Table 9: Breakdown testing results for losses based on ResNet-18. Results for seed 0 for the second loss configuration are
marked in red because the model failed to perform consistently on this seed. Bold numbers indicate the model that performs
the best on a metric among 5 seeds.

Looking at the training, validation and testing results, we observe improvement in all three phases by applying our method
to the training process. Although the improvement gained on ResNet-18 is smaller comparing to that gained using the MSD-
Net architecture, it shows our method can also be successfully applied to the ResNet architecture, and potentially can be
generalized to other deep networks.

We argue that a psychophysical loss can improve the performance of OSR on networks that have multiple classifiers/exits
because human behavior provides richer information for deep network training, and it enforces the network to be more
consistent with human on image recognition. However, these results show that the improvement gained depends on the
architecture of the network; our method works better on a network like MSD-Net that has deep structure and that was
intentionally designed with multiple classifiers.

27



Algorithm TP TN FP FN F-1 MCC Test Known
Acc. Top-1

Test Unknown
Acc.

LossC 137399 12639 35428 199049 0.5398 -0.2185 22.6010 26.2950
LossC + LossP 138704 1270 35497 197744 0.5432 -0.2168 22.6559 26.1505
LossC + LossP

+LossE
139006 12317 35750 197442 0.5438 -0.2196 23.0299 26.0242

LossC + LossE 137307 12890 35177 199141 0.5396 -0.2153 22.1286 26.8176

Table 10: Average testing results for multiple seeds for losses applied to ResNet-18. Results for the second loss configuration
excluded results from seed 0 because the model failed to perform consistently on this seed, thus the average only calculates a
result from seed 1, 2, 3 and 4.

3.3 Breakdown Results for All Methods
Table 11 shows the full breakdown of results (i.e., the individual results for each of the 5 seeds) for the standalone classifier
baselines, and Table 12 shows the full breakdown of results for the deep learning-based methods. The results in bold represent
the best result for a specific metric among the 5 seeds for that method.

In Table 12, some values are “nan” for the Matthews correlation coefficient (MCC) score, because this metric is defined
by:

MCC =
TN × TP − FN × FP√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

When TN + FN is zero, the numerator in the equation is divided by zero, and thus leads to “not a number”as the result.

Algorithm Seed TP TN FP FN F-1 MCC Test Unknown Test Known Top-1
SVM 0 164378 25599 22468 172070 0.6282 0.0139 0.5326 0.0062

1 163091 27448 20619 173357 0.6271 0.0369 0.5710 0.0041
2 154708 26632 21435 181740 0.6036 0.0092 0.5541 0.0046
3 151932 25628 22439 184516 0.5949 -0.0101 0.5332 0.0067
4 152100 26984 21083 184348 0.5969 0.00894 0.5614 0.0082

W-SVM 0 350 0 48087 336078 0.0018 -0.9959 0.0923 0.0009
1 381 0 47931 336203 0.0020 -0.9955 0.0934 0.0010
2 362 0 48115 336038 0.0019 -0.9957 0.0928 0.0009
3 410 0 47101 337004 0.0021 -0.9951 0.1101 0.0011
4 392 0 48112 336011 0.0020 -0.9954 0.0981 0.0010

PI -SVM 0 891 201 48066 335357 0.0046 -0.9872 0.0832 0.0028
1 807 208 48121 335379 0.0042 -0.9881 0.0810 0.0026
2 851 210 48010 335444 0.0044 -0.9875 0.0827 0.0028
3 790 240 48001 335484 0.0041 -0.9879 0.0851 0.0027
4 830 247 48057 335381 0.0043 -0.9873 0.0832 0.0028

OpenMax 0 187520 19882 28182 132576 0.7000 -0.0004 0.4137 0.0036
1 226722 13591 34473 94014 0.7792 -0.0077 0.2828 0.0037
2 249973 9967 38097 69771 0.8225 -0.0089 0.2074 0.0047
3 189123 20942 27122 132893 0.7027 0.0157 0.4357 0.0034
4 228974 13520 34544 91346 0.7844 -0.0029 0.2813 0.0040

EVM 0 1977 47796 271 334471 0.0117 0.0010 0.9944 0.0047
1 1293 47870 197 335155 0.0077 -0.0014 0.9959 0.0036
2 1142 47918 149 335306 0.0068 0.0017 0.9969 0.0035
3 1952 47812 255 334496 0.0115 0.0022 0.9947 0.0050
4 3602 47494 573 332846 0.0211 -0.0039 0.9881 0.0061

Table 11: Testing results for standalone classifier baselines.

28



We also conducted a series of experiments for the four methods that utilized features that were reduced in dimensionality
by PCA in order to explore algorithm sensitivity to different PCA settings. Recall from above that we applied PCA such that
the reduced features represented 99% of the original features. In these experiments, we picked three larger fixed feature sizes
that are reasonable for balancing information content and available computational resources: 250, 500 and 1000 dimensions.
The corresponding results are shown in Table 13, Table 14 and Table 15. As can be seen, there is barely any change in the
results, which indicates that our chosen dimensionality reduction scheme is reasonable, since increasing the dimensionality
does not provide additional information. It is worth mentioning that after increasing the dimensionality, the EVM cannot
detect known samples anymore and classifies every test sample as unknown. We use dashed lines to indicate this in the
following tables.

References
[1] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger, “Multi-scale dense networks for resource efficient image

classification,” in ICLR, 2018.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, 1995.

[3] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recognition,” IEEE T-PAMI, vol. 36, no. 11, 2014.

[4] L. P. Jain, , W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition using probability of inclusion,” in ECCV, 2014.

[5] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme value machine,” IEEE T-PAMI, vol. 40, no. 3, 2018.

[6] A. Bendale and T. E. Boult, “Towards Open Set Deep Networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 1563–1572. [Online]. Available: https://www.cv-foundation.org/openaccess/content cvpr 2016/html/
Bendale Towards Open Set CVPR 2016 paper.html

[7] L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning with counterfactual images,” in ECCV, 2018.

[8] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura, “Classification-reconstruction learning for open-set recog-
nition,” in IEEE/CVF CVPR, 2019.

[9] D. Miller, N. Sunderhauf, M. Milford, and F. Dayoub, “Class anchor clustering: A loss for distance-based open set recognition,” in
IEEE/CVF WACV, 2021.

[10] S. Grieggs, B. Shen, G. Rauch, P. Li, J. Ma, D. Chiang, B. Price, and W. J. Scheirer, “Measuring human perception to improve
handwritten document transcription,” IEEE T-PAMI, vol. 44, no. 10, 2022.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

29

https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html


Algorithm Seed TP TN FP FN F-1 MCC Test Unknown Test Known Top-1
OSRCI 0 336179 39 48025 205 0.9330 0.0027 0.0008 0.0040

1 336384 0 48064 0 0.9333 nan 0 0.0038
2 321613 2052 46012 14771 0.9137 -0.0020 0.0427 0.0030
3 336384 0 48064 0 0.9333 nan 0 0.0037
4 332311 581 47483 4073 0.9280 -0.0001 0.0121 0.0036

CROSR 0 54089 41069 6995 282295 0.2722 0.0138 0.8545 0.0205
1 50193 41568 6496 286191 0.2554 0.0131 0.8648 0.0174
2 56809 40773 7291 279575 0.2837 0.0153 0.8483 0.0209
3 54324 41114 6950 282108 0.2732 0.0152 0.8554 0.0201
4 51308 41625 6439 285076 0.2604 0.0172 0.8660 0.0174

CAC-OSR 0 21776 45255 2809 314608 0.1207 0.0085 0.9416 0.0005
1 20999 45569 2495 315385 0.1167 0.0145 0.9481 0.0004
2 20825 45546 2518 315559 0.1158 0.0132 0.9476 0.0005
3 22820 45366 2698 313564 0.1261 0.0156 0.9439 0.0006
4 20008 45498 2566 316376 0.1114 0.0086 0.9466 0.0005

LossC 0 150031 9616 38448 186401 0.5716 -0.2342 20.00 15.97
1 164704 9744 38320 171731 0.6106 -0.2039 20.27 30.22
2 170872 11039 37025 165576 0.6278 -0.1742 22.97 35.56
3 157431 9558 38506 179002 0.5914 -0.2204 19.89 21.73
4 169667 10646 37418 166768 0.6243 -0.1819 22.15 29.87

LossC + LossP 0 163659 8891 39173 172774 0.6070 -0.2177 18.50 22.32
1 190692 17034 31033 145756 0.6833 -0.0528 35.43 38.09
2 166445 10605 37459 169990 0.6161 -0.1886 22.06 30.68
3 150340 9798 38266 186093 0.5727 -0.2311 20.38 21.42
4 165341 11237 36827 171094 0.6140 -0.1820 23.38 30.91

LossC + LossP
+ LossE

0 154791 26312 21755 181657 0.6035 0.0050 54.74 37.08

1 153070 26814 21253 183378 0.5994 0.0085 55.78 36.81
2 152738 25866 22201 183710 0.5973 -0.0052 53.81 36.01
3 151808 25949 22118 184640 0.5949 -0.0059 53.98 36.15
4 153610 25415 22652 182838 0.5992 -0.0097 52.87 36.33

LossC + LossE 0 152906 25879 22188 183542 0.5978 -0.0047 53.84 35.88
1 158652 24753 23314 177796 0.6121 -0.0089 51.50 36.78
2 148619 26661 21406 187829 0.5869 -0.0024 55.47 35.95
3 153397 26542 21525 183051 0.5999 0.0054 55.22 36.42
4 153493 27295 20772 182955 0.6011 0.0160 56.79 36.78

Table 12: Testing results for deep learning-based baselines.

30



Algorithm Seed TP TN FP FN F-1 MCC Test Unknown Test Known Top-1
SVM 0 156428 1519 1485 180020 0.6328 -0.0055 0.5057 0.0060

1 159912 1608 1396 176536 0.6425 0.0020 0.5352 0.0041
2 152790 1578 1426 183658 0.6228 -0.004 0.5252 0.0042
3 146332 1527 1477 190116 0.6044 -0.0107 0.5083 0.0069
4 143729 1645 1359 192719 0.5969 -0.0048 0.5476 0.0079

W-SVM 0 320 0 51021 333165 0.0017 -0.9964 0.0911 0.0008
1 331 0 51321 332855 0.0017 -0.9963 0.0914 0.0009
2 315 0 50206 333985 0.0016 -0.9964 0.0910 0.0008
3 341 0 49985 334180 0.0018 -0.9961 0.0921 0.0009
4 334 0 49912 334260 0.0017 -0.9962 0.0929 0.0009

PI -SVM 0 721 189 48210 335386 0.0037 -0.9892 0.0821 0.0024
1 744 211 48328 335223 0.0039 -0.9891 0.0839 0.0025
2 721 205 48290 335290 0.0037 -0.9889 0.0829 0.0024
3 749 188 48381 335188 0.0039 -0.9892 0.0864 0.0024
4 812 201 48922 334571 0.0042 -0.9891 0.0821 0.0026

EVM 0 - - - - - - - -
1 - - - - - - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -

Table 13: Testing results for the four methods that use features after the application of PCA to reduce the representation to
250 dimensions.

Algorithm Seed TP TN FP FN F-1 MCC Test Unknown Test Known Top-1
SVM 0 146845 1602 1402 189603 0.6059 -0.0057 0.5332 0.0062

1 151455 1666 1338 184993 0.6191 0.0008 0.5545 0.0040
2 144019 1663 1341 192429 0.5978 -0.0034 0.5535 0.0048
3 146845 1602 1402 189603 0.6059 -0.0057 0.5332 0.0062
4 133415 1703 1301 203033 0.5663 -0.0069 0.5669 0.0081

W-SVM 0 298 0 52012 332196 0.0015 -0.9967 0.0899 0.0008
1 310 0 51882 332314 0.0016 -0.9966 0.0891 0.0008
2 305 0 51841 332860 0.0016 -0.9966 0.0887 0.0008
3 310 0 51202 332994 0.0016 -0.9965 0.0881 0.0008
4 330 0 51303 332873 0.0016 -0.9965 0.0881 0.0008

PI -SVM 0 751 228 50092 333435 0.0039 -0.9891 0.0812 0.0025
1 758 221 50101 333426 0.0039 -0.9890 0.0814 0.0025
2 763 211 50085 333447 0.0040 -0.9892 0.0819 0.0024
3 755 226 51012 332513 0.0039 -0.9891 0.0825 0.0026
4 758 222 51018 332508 0.0039 -0.9892 0.0821 0.0025

EVM 0 - - - - - - - -
1 - - - - - - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -

Table 14: Testing results for the four methods that use features after the application of PCA to reduce the representation to
500 dimensions.

31



Algorithm Seed TP TN FP FN F-1 MCC Test Unknown Test Known Top-1
SVM 0 135028 1737 1267 201420 0.5712 -0.0039 0.5782 0.0067

1 139877 1745 1259 196571 0.5857 -0.0006 0.5808 0.0039
2 132666 1748 1256 203782 0.5640 -0.0045 0.5818 0.0045
3 135028 1737 1267 201420 0.5712 -0.0039 0.5782 0.0067
4 121726 1815 1189 214722 0.5299 -0.0066 0.6041 0.0084

W-SVM 0 280 0 53292 330934 0.0015 -0.9970 0.0812 0.0007
1 288 0 53288 330930 0.0015 -0.9969 0.0822 0.0007
2 276 0 53197 331033 0.0014 -0.9970 0.0821 0.0007
3 275 0 53229 331002 0.0014 -0.9979 0.0827 0.0007
4 281 0 53212 331013 0.0015 -0.9969 0.0821 0.0007

PI -SVM 0 731 235 51241 332299 0.0038 -0.9892 0.0808 0.0025
1 735 240 51255 332276 0.0038 -0.9891 0.0812 0.0025
2 744 252 51265 332245 0.0039 -0.9889 0.0818 0.0024
3 750 243 51254 332259 0.0039 -0.9889 0.0815 0.0026
4 753 247 51259 332247 0.0039 -0.9889 0.0816 0.0026

EVM 0 - - - - - - - -
1 - - - - - - - -
2 - - - - - - - -
3 - - - - - - - -
4 - - - - - - - -

Table 15: Testing results for the four methods that use features after the application of PCA to reduce the representation to
1000 dimensions.

32


	Additional Details For the Psychophysical Study
	Data Collection Process on Amazon Mechanical Turk
	Class-Level Reaction Time Analysis
	Image Level Reaction Time Analysis

	Descriptions of Baseline Approaches.
	Standalone Classifiers
	Deep Learning-Based Methods

	Additional Detail on Experimental Setups and Supplemental Results
	Additional Detail on Reaction Time and Exit Strategy
	Analysis of the Generalizability of Proposed Method
	Breakdown Results for All Methods


