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ABSTRACT

Modern spectrometer equipment tends to be expensive, thus
increasing the cost of emerging systems that take advantage
of spectral properties as part of their operation. This paper in-
troduces a novel technique that exploits the spectral response
characteristics of a traditional sensor (i.e. CMOS or CCD) to
utilize it as a low-cost spectrometer. Using the raw Bayer pat-
tern data from a sensor, we estimate the brightness and wave-
length of the measured light at a particular point. We use
this information to support wide dynamic range, high noise
tolerance, and, if sampling takes place on a slope, sub-pixel
resolution. Experimental results are provided for both simula-
tion and real data. Further, we investigate the potential of this
low-cost technology for spoof detection in biometric systems.
Lastly, an actual hardware systhsis is conducted to show the
ease with which this algorthim can be implemented onto an
FPGA.

1. INTRODUCTION

Obtaining sufficient spectral resolution and sufficient dynamic
range in spectrometers has, until now, required a higher res-
olution linear CCD with 10-bit or 12-bit resolution. Little
economy of scale can be achieved, because these are such
low volume components. Thus, the cheapest available units
cost over $3,000, with most applications using a device priced
around $7,000. The need for lower cost spectrometer equip-
ment is apparent in several, very different domains.

The biometrics community is most interested in low-cost
spectral analysis, and has been instrumental in developing
spectral intensity matching techniques. Useful attacks against
biometrics have been widely reported in [1] [2] [3], forc-
ing security engineers to take appropriate precautions against
false body parts and behaviors. In particular, fingerprint recog-
nition is a popular method for authentication and recognition,
but is also very susceptible to attack. Spectral imaging for
spoof detection is not new [4] [5], but a low-cost solution for
an enrollment/verification system has yet to emerge.

Determining the exact wavelength positions in the im-
agery is another problem of interest. Calibration and char-
acterization of CCDs used for spectral imagery is of inter-
est to researchers [6] [7] and [8]. Because the positions will

vary based on the CCD used, calibration based on known light
sources is often used. Since the intent here is to use color im-
agery (traditionally, intensity has been used for spectral im-
agery), it may be possible to map color to wavelength more
easily.

Beyond biometrics and sensor considerations, lower cost
spectrometers can be deployed in many areas where higher
cost equipment is currently in service. Industrial manufactur-
ing and printing, specifically, quality control for color (dyes,
inks, and various other pigments) evaluates spectral data. If
one can drive down the cost of the production process, or
make a scalable process feasible, companies can produce a
cheaper product, while maintaining the quality. Many indus-
trial/commercial products, especially copiers and scanners,
already contain low-cost sensor parts for traditional imaging
purposes. Enhancing existing designs to take advantage of
imaging systems that can provide the spectral data we’re look-
ing for is very possible. Recent work [9] [10] [11] considers
spectral reflectance measurement and associated device cali-
bration, with the very recent work of [9] utilizing RGB sen-
sors to do so. In another example of industrial quality control,
screening for the presence of unintended harmful materials,
such as the case of lead in toys, can also be accomplished.

Another proposed application area is in microscopy. If
target cells are dyed, and let to circulate through a biological
system, their later identification is desirable. Using the tech-
nique proposed in this paper, it would be possible to forgo
construction of a complete multispectral image for an individ-
ual cell, or group of cells, and instead rely on a spectrograph
taken from a point on a cell. The time saved when analyzing
thousands of cells would be significant.

We also envision this technology would be valuable for
general laboratory science in the UV to near-IR bands, espe-
cially for educational institutions, where equipment budgets
are constrained.

In another, potentially lifesaving application, a low-cost
spectrometer can be used as a replacement for breathalyzer
technology. In a variation on known spectral measuring sys-
tems [12] [13] utilizing LED illumination technology similar
to [14] [15] to prevent drunk driving, we propose correlat-
ing blood oxygenation with light absorption, so an intoxica-
tion measurement can be made by mapping spectral response
to a blood-alcohol level. This technology can be completely



Fig. 1. Spectral Response Characteristics for the Micron
MT9V022 CMOS sensor

non-invasive, and, if coupled with a biometric entry system,
does not carry the same stigma as current interlock technol-
ogy for vehicles. Without a per cost use commonly found in
this area, a low-cost spectrometer system can be deployed for
under $100.

The rest of this paper is as follows. In Section 2 we de-
scribe the design of our low-cost spectrometer. Three differ-
ent advantages of the design are discussed, including wide
dynamic range, noise tolerance, and subpixel resolution. In
Section 3, simulation results are presented for a set of artifi-
cial spectral data to compare to straight intensity imaging, and
to show the subpixel resolution technique. Bringing the ex-
periments out of simulation, we test a set of real light sources
in Section 4, and conduct a biometric spoof detection experi-
ment in Section 5. Finally, in Section 6, we describe an actual
hardware implementation of the techniques presented.

2. DESIGNING A LOW-COST SPECTROMETER

At the very core of our approach is the Bayer color pattern
[16], coupled with the spectral response characteristics of the
commodity sensor at hand. As depicted in Figure 1, the spec-
tral response curve for a sensor provides a mapping between
wavelengths and associated quantum efficiency. For single
chip color sensors (i.e. CCD or CMOS), individual pixels
have colored filters. For these sensor, depending on the wave-
length incident on a red, green, or blue pixel, the pixel will
register an intensity value proportional to the corresponding
quantum efficiency. Single chip cameras commonly use the
Bayer pattern (Figure 2), containing 50% green, 25% red,
25% blue, coupled with a demosaicing scheme for color im-
agery. In our approach, the different spectral responses of the
raw Bayer data are exploited to both estimate the brightness
of the sample, as well as to determine the wavelength of mea-
sured light at that point. Unlike regular imaging applications,

Fig. 2. Typical Bayer Pattern

the dispersive filter will separate light, and, with calibration,
we can know what range of wavelengths are expected at any
particular location. We exploit this in three different ways.

First, as is evident in the response curves of Figure 1, at
any particular wavelength, the response of different pixels is
significantly different. For example, if at 650nm, the incident
illumination is sufficient to cause the red channel to saturate,
we will still be able to measure the green and the blue, which
have much lower response at that wavelength, by a factor of 4
and 8 respectively, hence adding 4 additional bits to the effec-
tive dynamic range. For, CCD and CMOS sensors, this tech-
nique can add significantly to the measurable dynamic range,
within the visible spectrum. A similar approach for digital
micromirror arrays was used in [17], and with spatially vary-
ing pixel exposures in [18]. We can utilize the technique [18]
because we know the expected wavelength from calibration.
In comparison to existing technology, this level of dynamic
range is achieved by high-end systems integrating cooled lin-
ear arrays, costing thousands of dollars.

Second, if we design the physical spectrometer device to
produce a strip on the sensor (with a traditional slit spectrom-
eter, or by spreading a spot into a line with a cylindrical lens),
we will have multiple measurements for each pixel type for
each spectral line. We can combine data (i.e. take the mean)
to reduce random sensor noise, as well as trim the tails of
each line to reduce extreme variation from the mean (spatial
non-uniform distortion). It is important to note that we are ex-
ploiting the fact that from the calibration of the color separa-
tion/dispersion pattern we know what range of colors should
be incident on a pixel, and hence know which measurements
can be combined.

Third, we can realize another advantage if, rather than
aligning spectral lines directly along the rows or columns, we
intentionally image them at an angle along the 2D array (Fig-
ure 3. By combining the 2D nature of the sampling grid with a



Fig. 3. If cells averaged their content, the left most pairs
would produce constant data. Sampling of the sloped lines
provides sufficient information to determine there are 2 lines,
and even to estimate the width of those lines.

slanted linear pattern we can provide for subpixel reconstruc-
tion, effectively improving the sampling resolution by a factor
of 8 or more. Combining the slope-based computations with
the spatial varying exposure uses data in multiple ways and to
balance noise with increased resolution the preferred embod-
iment only gains a factor of 8 in resolution. This technique
becomes more interesting with the observation that, typically,
when we sample, we will not have perfect alignment between
intensity for a particular wavelength and a column of pixels
where we expect the wavelength. Thus, we can gain an ad-
vantage from a seeming disadvantage in alignment.

In applications such as spoof detection for biometric sys-
tems and industrial manufacturing, recovery of the spectrum
is followed by matching with a pre-stored spectral signature.
If the application’s only purpose for the spectrum is matching,
then we have a new alternative, direct multi-colored spectral
signature matching. Rather than finding a super-resolution
spectrum or fitting the parameters of a discrete model, we
use the raw Bayer data to represent the signature. Because
the raw data is sufficient to reconstruct the super-resolution
spectrum, if an appropriate matching metric can be applied,
it could provide for equivalent matching quality without the
computational costs of doing super-resolution or non-linear
optimizations.

Further considerations are made with respect to the de-
sign of the physical device. To split light into its respec-
tive spectral components, a grating or prism must be used.
At the cheapest end, holographic diffraction gratings in the
range of 500 lines/mm and 1000 lines/mm are very common,
and extremely inexpensive (less than $5 per 6” x 12” sheet).
More expensive Echelle gratings (around $100 for a single,
small sheet) provide for multiple diffraction orders via a sys-

tem of two gratings, producing spectrograms that are usually
slanted - useful for the subpixel reconstruction problem de-
scribed above. Beyond gratings, a newer technology, spheri-
cal beam volume holograms, can be used to perform the job
of a slit, first lens, grating, and second lens in a spectrometer.
With this, a sensor is simply attached, leading to a full spectral
imaging package. This technology is still experimental, but is
a likely candidate for low-cost spectral systems as it matures.

As mentioned in Section 1, the likely deployment of this
design will be in existing commercial and industrial devices
where spectrometer equipment has traditionally been too ex-
pensive to use. Thus, image processing will likely take place
in an embedded platform. Bayer conversion in hardware is
not a new innovation, with image enhancement available for
both CMOS [19] and CCD [20] sensors. Typically, the raw
Bayer data is demosaiced, before gamma correction, color
correction, white balancing, and contrast enhancement is ap-
plied. By dedicating part of the hardware to perform the spec-
tral analysis before the demosaicing, existing designs can be
converted to dual-use (think of a biometric imaging system
that can both sample a finger, and perform spectral spoof de-
tection). The cost of an FPGA based image processing system
would be between $10 - $15.

3. SIMULATION RESULTS

In simulation, we were primarily concerned with answering
two questions: 1. How well does the Bayer technique com-
pare with 2D intensity imaging? 2. Can we achieve subpixel
resolution by imaging on a slope?

For many applications, spectral signature matching is a
useful operation. The premise is to take a high quality sample
of a known material, and use its spectral response as a com-
parison for unknown materials, or material verification. Most
systems simply use a grayscale image, and compare intensity
values of a sample to the signature image. The noise toler-
ance of linear intensity arrays is easy to consider. With only
one row of pixels, there is no additional data to consider for
a particular wavelength. Thus, a sample tainted by noise can
only be corrected if a pre-defined noise model is known dur-
ing image processing. 2D sensors provide more detail. Using
the Bayer pattern, we have even more detail with each three
color pixel block, and can match signatures at roughly the
same rate, or better, compared to more robust 2D intensity im-
age matching. The signature matching simulations utilize the
spectral characteristics of a Micron MT9V022 CMOS sensor.

Spectral signature matching was tested between Bayer pat-
tern and grayscale simulation images representing discrete
spectral bands. In each case, the Bayer pattern method per-
formed as good, or better than the performance of the grayscale
matching method. For each grayscale image, and its corre-
sponding Bayer pattern image, 30 standard normal additive
noise levels were applied, from � = 1 to � = 30, for a total
of 300 images.



Image Gaussian
noise (�)

Bayer 1 17
Intensity 1 16
Bayer 2 20
Intensity 2 16
Bayer 3 28
Intensity 3 23
Bayer 4 17
Intensity 4 16
Bayer 5 (spatial non-uniform
distortion)

8

Intensity 5 (spatial non-uniform
distortion)

12

Table 1. Signature matching between Bayer and Intensity
spectrum pairs. 30 standard normal additive noise levels were
applied. In all cases, the Bayer technique performs compara-
bly, if not better to intensity matching.

Each noisy image was run through a Bayer signature match-
ing algorithm, and a grayscale matching algorithm (simple in-
tensity matching), both incorporating noise handling via tak-
ing the mean of each wavelength column, and trimming the
tails of extreme values. Each matching algorithm keeps track
of mismatched pixel intensity values; in the case of the Bayer
data, colors are aligned against each other for matching. If
the mismatched pixel count exceeds at predefined threshold
(in our testing, 5%), then we consider the test image to not
match the signature image.

The results for 5 image pairs are presented in Table 1.
The second column represents the noise limit where matching
was still possible. The last pair, 5, with spatial nonuniform
distortion plus gaussian noise, is the only instance where the
Bayer imagery performs slightly weaker (though comparably)
to the intensity image.

Simulating sub-pixel resolution is accomplished by con-
sidering a situation similar to the right most spectral lines of
Figure 3, that is, intentionally imaging the spectral lines at a
small slant. In the previous noise experiments 1 pixel width
was considered the equivalent of 1nm of wavelength. This
approximation can further be refined by recognizing that only
a fraction of each wavelength is exciting the pixel when the
spectral lines are imaged at a slant. Figure 4, represents this
situation. If Figure 1 is considered continuous, then the pre-
dicted values between each 1nm wavelength can also be mod-
eled. When taking these modeled values at the detected wave-
length, found through physical calibration, the sub-wavelength
values can be interpolated by considering a system of linear
equations. Given the distributional model of spreading, the
expected values can be extracted and then used to estimate the
actual values with the sub-pixel resolution desired. It is im-

Fig. 4. Example pixel orientation of sloped spectral lines in
a total region consisting of 2 rows and 50 columns (slope =
25). Spectral data covers 5 different pixels, in varying area
size per subpixel region. By considering the theoretical value
of this subpixel regions (as shown) and measured subpixel
regions after sampling, we can achieve subpixel resolution.

Fig. 5. Test image with slope=25

portant to notice that for the upper portion of the image pixel
values for 3 and 4 fall away. This can be seen quite clearly
in Figure 4. Correspondingly, on the lower half of the figure
pixel measurements for 1 and 2 fall away. Not also how this
can be important if the central line would have saturated the
center pixel.

Figure 5 is a sample image with a slope of 2 (representing
a realistic, unintentionally sloped sample). We presume the
image has a spectral resolution of 1 pixel per 2 wavelengths.
By applying the above method, with an ideal goal of 10 spec-
tral components, we can separate 10 2-angstrom wide spec-
tral components for each pixel column of sampled data. This
gains a factor of 10 in resolution. Figure 6 shows a spec-
trogram with blurring between 651nm and 652nm for a red
laser (expected spectral response around 650nm, according to
equipment specification) imaged at, roughly, a 2 degree slant.

4. LIGHT SOURCE RESULTS

Real experimental data was gathered using a Sony ICX084
CCD sensor, configured to capture images in raw Bayer mode.
In front of the sensor, a diffraction grating of 500 lines/mm



Fig. 6. Spectrogram for a red laser imaged at roughly a 2
degree slant. Note the blurring between 651nm and 652nm. If
actual positions are known, super resolution can be achieved
from this data.

Fig. 7. The discrete spectrum of a cold compact fluorescent
tube light

was used to split light into its spectral components. Ten dif-
ferent light sources were sampled: mercury fluorescent, laser,
halogen at a low intensity, halogen at a medium intensity,
halogen at a high intensity, green LED, yellow-green LED,
Orange LED, Yellow LED, White LED (the LEDs emit a con-
tinuous spectrum, as opposed to some older LEDs, that emit
a very discrete spectrum). These sources represent both dis-
crete (for example, Fig. 7) and continuous spectra (for exam-
ple, 8). Computed spectrograms produced results consistent
with known spectral responses, as shown in Fig. 10. We note
that the reference spectrum in Fig. 9 is one of many CFL
spectra, with each manufacturer uses its on mix which pro-
duces different spectra. Our CFL is a hand-held flashlight
and not expected to match exactly, but the prominent spectral
signature, the prominent mercury lines at 436nm and 546nm,
are well recovered. The limited calibration data from Sony
limited our experiments to spectral responses in the range of
400nm - 700nm. Experimentation showed the sensor was ca-
pable of registering light in the UV and near-IR bands, thus
hinting at the potential of sensing beyond the visual spectrum
at a very low cost.

The ability to estimate intensity in saturated wavelength
ranges is a core piece of our design. Thus, we demonstrate it
with experimental samples of laser light, where red saturates

Fig. 8. The continuous spectrum of halogen light

Fig. 9. Reference spectrograph of a cold com-
pact fluorescent tube light. Image Credit (adapted):
home.att.net/⇠ledmuseum/spectra7.htm

Fig. 10. Computed spectrogram for the the sampled cold
compact fluorescent tube light of Fig. 7



Source Gaussian
Noise (�)

S&P
Noise
(density)

Spatial
Nonuniform
Distortion
(rows)

Mercury
Fluorescent

15 3 10

Laser 15 2 10
Halogen
Low

15 4 6

Halogen
Medium

15 10 6

Halogen
High

15 10 6

Green LED 13 2 12
Yellow-
Green LED

15 3 10

Orange LED 15 10 6
Yellow LED 15 8 7
White LED 15 10 7

Table 2. Noise tolerance of 10 different light sources

around 600nm. In red’s saturation range, we can still measure
green (both Gb and Gr) and blue, allowing us to estimate the
true value of red. By considering all three colors, we can es-
timate the general intensity of the spectral response across all
measurable wavelengths, providing information where satu-
ration had previously occurred. Figure 12 shows the com-
puted spectrogram for the sampled halogen light of 8. An
increase in dynamic range beyond 8 bit (maximum intensity
value of 255) can clearly be seen, as the peak of the curve
extends beyond 450 at around 620nm. Compared to the ref-
erence spectrum in Fig. 11, there is some variation. There are
several reasons for this. First, the dip and subsequent rise of
the curve between 650nm and 700nm is caused by the green
intensity increasing, as the modeled response decreases, with
green being used to model the red response. Second, the con-
tinuous nature of the halogen spectrum proves to be more dif-
ficult in experimentation than the discrete spectrum of fluores-
cent light. Error from the sensor’s modeled spectral response
characteristics, coupled with error introduced by the experi-
mental apparatus account for the rest of the deviation.

Noise tolerance results, while in general lower than the
simulation results, are still quite promising. We tested three
different types of noise, including guassian from � = 1 to
� = 15, S&P noise from density=1 to density=10, and spa-
tial non-uniform noise from row=1 to row=15, for a total of
400 test images. From Table 2, we observe a very high tol-
erance for gaussian noise, and a strong tolerance for S&P
and spatial non-uniform noise. From the data, there is an
inverse relationship between S&P and spatial non-uniform
noise, in terms of tolerance. Discrete spectra and tightly clus-

Fig. 11. Reference spectrograph for
halogen light. Image Credit (adapted):
www.fojo.org/papers/mepsoxygen/index files/image026.gif

Fig. 12. Computed spectrogram for the the halogen light of
Fig. 8. Note the increase in dynamic range beyond 8 bits.

tered wavelengths with lower intensity for spectral response
(mercury fluorescent light, laser, green LED, yellow LED) are
impacted strongly by low densities of S&P noise, because of
their wavelength arrangements. Conversely, these spectra tol-
erate local row distortion bands much better, as they do not
possess the amount of lower intensity spectral responses that
more continuous spectra do, thus, they do not lose as much in-
formation with increased spectral data loss. Nearly all sources
tolerate gaussian noise well, because the spectral data combi-
nation for three colors is rather robust.



5. SPOOF DETECTION FOR BIOMETRIC SYSTEMS

An important application area for a low-cost spectrometer is
spoof detection for biometrics. We performed three experi-
ments, sampling the reflectance of light off skin, skin covered
with gelatin “fingerprints”, and skin covered with gelatin “fin-
gerprints” mixed with chicken blood (meant to fool current
spoof detection technology by closer resembling the material
of the finger). Red laser light, at 650nm, and green laser light,
roughly between 545nm and 555nm, were used in this exper-
iment.

For the experimental process, subjects placed their fingers
over the light, with and without the spoofing material present.
Light passing through the finger was sampled after passing
through our slit spectrometer. In total, 90 fingers were sam-
pled, from a diverse range of subjects (Caucasian, African-
American, Asian) to account for variability in skin color.

Results of this experiment are shown in Figure 13. We
measured intensity as a function of absorption by material.
For each sample set, all samples were averaged, with real fin-
gers absorbing the most light, and gelatin and gelatin mixed
with blood samples reflecting noticeably more light, The dif-
ferences are dozens of standard deviations, stastically very
signfinicant compared to the variations across populations.
We can conclude that this technique is effective for spoof de-
tection in biometric systems.

6. HARDWARE IMPLEMENTATION

The algorithm to process the spectral lines is straight forward.
There are several steps to the process. First, the various pixel
types: Green, Red and Blue are sorted into appropriate bins.
Next, an average of all the intensities of the sorted pixels is
taken. Lastly, this data is output serially. To implement this
process on an FPGA several basic devices are constructed.

There are two main parts to the implementation: the Fi-
nite State Machine and the front end logic. First, a state ma-
chine in the form of a ring counter is used to sort the pixels
into various bins. As the state machine is sorting the data is
being added together in an accumulator. While this is occur-
ring a counter counts the clock cycles, which corresponds to
the number of pixels sorted. Then, another module divides
the number of summed intensities by the number of pixels
counted to get an average value. This value is output via the
serial port. The FSM consists of four D flip-flops. It was de-
signed using the one-hot encoding method. The negation of
the output of the last D flip-flop is tied into the input of the
first D flip-flop.

The output of this state machine is tied into the front end
logic module. The first level of the front end logic module
“ands” the input data with the output of the state machine.
When the machine is in the appropriate state the data gets
sorted into the correct accumulator, of which there are four.
Each accumulator represents a pixel type and is accompanied

Fig. 13. From left to right: gelatin, gelatin mixed with blood,
and real fingers. The mean, and two standard deviations from
the mean are shown.This difference between sample types is
significant enough to detect spoofing attacks against biomet-
ric systems.

by a counter. The accumulator is simply a register fed back
into a summing function, driven by the clock. The output
of the accumulator is divided by the number output by the
counter. The output can then be used by the techniques men-
tioned above to gain increased resolution and better accuracy
than other much more expensive spectrometers.

7. CONCLUSION

In this paper, we have introduced a novel technique for us-
ing common sensors as low-cost spectrometers. The low-cost
spectrometer design supports wide dynamic range, high noise
tolerance, and sub-pixel resolution. Promising results were



presented from experiments using simulation and real data,
highlighting the three key advantages, and the technique’s im-
provement over traditional intensity imaging. Further, we pre-
sented experimental data for a biometric spoof detection ap-
plication, with very promising results for detecting false fin-
gerprints, including those meant to mimic real fingers closely.
In terms of the actual implementation presented and cost, the
system can be implemented directly into an FPGA, at $10-
$15, with a CCD or CMOS for imaging, at $10-$20, deliv-
ering an attractive low-cost solution for a variety of applica-
tions.
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