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Abstract

We present and share
1

a foundational dataset of multi-

angle video recordings of scripted athletic movements to

enable the development of computer vision research appli-

cations that evaluate and identify lower-body injury risk.

The focus of the dataset is female athletes, who are at a

substantially increased risk of anterior cruciate ligament

(ACL) injury and are therefore a top priority for sports sci-

ence. In our study, varsity and club sport athletes perform

two assessment movements (the countermovement jump and

the drop jump). These jump tasks are used ubiquitously

in sports medicine research to characterize athleticism and

to identify risk factors that indicate ACL injury propensity.

The novelty of the dataset centers on (i) the type of move-

ment data (purposeful, evaluative movements that need to

be tracked with a high degree of precision), (ii) our gener-

alized collection method that can be replicated with ease by

non-experts, and (iii) the amount of data collected (we col-

lected data from 55 division one (D1) female athletes per-

forming 3 � 5 iterations of each jumps, for a total of 480

jumps). Data from each camera was manually aligned and

a fully automated pipeline was built to extract knee infor-

mation from athletes. Ideally, any athlete or researcher will

be able to easily replicate our setup and assemble a compat-

ible and complementary dataset to propel the development

and assessment of injury propensity models.

1. Introduction
Athletic injuries are often thought of as explainable

events; for example, ”he’s an older athlete, he shouldn’t
1cvrl.nd.edu/projects/data/

Figure 1. An athlete lands after performing a drop jump. Analysis
of the landing can identify if athletes are at risk for non-contact
anterior cruciate ligament (ACL) injury [5]. Once identified, ACL
injury risk reduction is a relatively simple process: athletes are
provided with targeted strength training exercises, reducing their
injury risk. Female athletes are two to nine times more likely than
men to sustain ACL injury across all sport types [1, 19]. We have
collected an exploratory dataset of 55 female athletes to facilitate
research into the use of consumer grade recording equipment for
automatic athlete assessment. Such a tool would allow athletes
without access to professional evaluation to self-assess for risk,
and for professional athletes to be assessed more frequently.

have been playing at that age”, or ”she didn’t know her lim-
its, she shouldn’t have pushed herself like that”. In actuality,



injury is a common occurrence across a broad spectrum of
athletes, and the fine line between healthy progression and
overexertion in training is often blurred.

Assessing the true cause of injury is difficult due to the
fact that injuries are also frequently attributed to simple bad
luck. Often a single bad landing or incident of player con-
tact will be cited as the root of the injury; however, studies
have shown that certain individuals are indeed more sus-
ceptible to non-contact anterior cruciate ligament (ACL)
injuries than others. In college sports, women on basket-
ball and soccer teams experience ACL injuries almost three
times as often as men do, despite having comparable ath-
letic exposure [1, 19]. Since college athletes are generally
very experienced in their sport and have trained themselves
to reach a high level of athleticism, it is surprising that one
demographic is affected so much more dramatically than
others. Furthermore, ACL injuries are especially debili-
tating injuries, and often involve significant recovery time.
Once an athlete first injures an ACL, the risk of subsequent
injury also increases [9, 5]. In extreme cases, the ACL may
be so damaged that it is replaced by a tendon from another
part of the body. While these tendons can be stronger, they
are not particularly suited to function as ACLs and often
limit athletes for the rest of their lives. ACL injuries can
quickly end an athlete’s career, and many athletes are con-
sidered lucky if they only lose a season due to an ACL in-
jury. However, knowing the effects and likelihood of ACL
injuries is only useful information if it aids in their avoid-
ance.

Fortunately, ACL injury prevention risk is is a well stud-
ied area [19, 5], and many programs have been proposed
and validated to reduce ACL injury risk before it occurs.
This is promising work; however, not every athlete is at risk
for ACL injury, and such programs cut into the already lim-
ited time of athletes, especially those who are also students.
There are several considerations for how to best identify in-
jury risk in athletics, such as athlete tracking during live per-
formance. In the case of ACL injuries, risk is best identified
by professionals using simple movements such as counter-
movement jumps and drop jumps. These evaluations are
simple, short, and informative. Using knowledge of these
movements, trainers are able to identify which athletes are
at risk, as well as the factors contributing to such risk. This
frees non-at-risk athletes to focus on their own needs while
allowing injury-reduction programs to direct their focus ex-
clusively and effectively to those at risk.

Of course, even with simple tests, identifying at-risk ath-
letes is difficult in practice. Skilled athletic trainers need to
allot time in order to monitor athletes and assess risk based
on identified risk studies [5], and they often have many tasks
and large teams to oversee. Additionally, the amount of
institutional support for athletic training can vary widely
within the collegiate athletics space. Outside of college and

professional sports, many active people do not have access
to trainers at all.

We believe that computer vision has advanced far
enough that these risk tests can be conducted by trained
computer vision algorithms with consumer grade equip-
ment. As a first step toward this goal, we have collected
video data from athletes performing a drop jump, which
is often used to evaluate ACL injury risk [5]. Our data
was collected by placing three consumer grade cameras in
a semicircle around an athlete to allow researchers to per-
form 3D or 4D reconstructions. We intentionally left the
camera placement inexact, requiring built models to gener-
alize to variations in setups, which increase the likelihood
of a model’s applicability to unseen data. Ideally, any non-
expert could create an approximation of our setup and data
collection technique using their own cameras, achieving the
ability to assess themselves for ACL injury risk. To our
knowledge, this is the first dataset of its kind.

By focusing our initial collection on athletes within a
high-risk demographic at the start of our research, we tar-
get those who are more likely to show evidence of risk. In
this way, we can more quickly obtain a wide amount of data
pertaining directly to those who are susceptible to ACL in-
juries. This also allows our research to have a more sub-
stantial impact by aiding the group of athletes that is most
affected by these debilitating injuries.

In the future, we hope to design, implement, and deploy
an evaluative system that can identify ACL risk at or beyond
the level of a trained athletic trainer. Ideally, this work will
motivate further research into the use of computer vision as
an assessment tool in athletics. As an initial start, we have
developed a pipeline to process videos from collection to
knee angle estimation using Carnegie Mellon University’s
OpenPose software [20], which is free and accessible to
anyone. This groundwork will allow us to begin model-
ing the specific movements needed to assess risk and will
lead to a multitude of research into injury identification and
individualized prevention techniques accessible to any and
all athletes.

2. Related Work in Sports Medicine and Com-
puter Vision

In this section we first provide a brief introduction to
evaluative movements and their uses for identify injury risk
identification and fitness assessments in the field of sports
medicine. Next, we discuss cases of computer-aided risk
evaluation. Finally, we discuss the current state of human
body tracking in the computer vision community.

2.1. Sports Medicine
In the field of sports medicine there are two evaluative

movements that are often used to assess athletes and iden-
tify injury risk: the countermovement jump and the drop



jump. In this section we will provide an introduction to each
movement and explain how the movement has been used in
the field of sports medicine.

2.1.1 The Countermovement Jump

The countermovement jump is a simple task that provides
reliable insight into athlete fitness [7]. The jump consists
of three steps, all performed without pausing. The athlete
begins the jump with their arms held out directly in front of
them, perpendicular to their body. The athlete then squats so
that the knees are at 90 degree angles, simultaneously arcing
their arms downward, past their legs, and behind their back,
until their arms are again parallel to the floor. They then
immediately reverse the arc with their arms, swinging them
forward to propel the jump upward, fully extending their
legs and using the combined momentum to jump into the air.
Finally, the athlete lands as close to their jumping off point
as possible; they allow their knees to bend and to absorb the
impact of the jump. The full procedure is shown from left
to right in 2.

The countermovement jump has a long history of use
as an evaluative tool for athletes [14, 3, 4]. It has been
used to measure an athlete’s physiological adaptation to
their power training, or to assess the level of fatigue [4].
These studies include statistical analyses that focus on es-
timation of power, force, velocity, and displacement vari-
ables. Recently, sports medicine research has expanded
its approach to include temporal jump information, consid-
ering the means of variables as well as maxima from an
assessment [3, 21]. Ideally, these same variables can be
tracked automatically using video data and body tracking
models, leading to individualized insight into the effects of
an athlete’s training program.

2.1.2 Drop Jump

The drop jump begins from an elevated platform. The ath-
lete steps forward off the edge of the platform; it is im-
portant to ensure that this stepping motion follows the hor-
izontal plane of the initial platform, rather than a typical
downward step. As the athlete drops to the ground, they
should land with their knees slightly bent. In a continuous
motion, the knees should continue bending with the arms
naturally extending behind the athlete as their torso leans
forward. Immediately following this position, the athlete
should jump, swinging their arms forward and using the
combined momentum of the drop and their crouching posi-
tion in order to propel themselves upward and extend their
legs. As in the countermovement jump, the athlete should
make an effort to land with their feet in the same position
they occupied in the crouching position.

As with the countermovement jump, the drop jump has a
strong history as an evaluative tool, and is often used in con-

junction with the countermovement jump for a fuller picture
of athleticism [21, 11, 6]. However, the jump landing task
also has a long history of use for ACL evaluations in partic-
ular. Hewett et al. [5] identified joint angles and joint loads
of 205 female athletes performing a drop jump and moni-
tored which athletes sustained ACL injuries. It was found
that knee angle, ground reaction force, and speed were all
predictive of ACL injury propensity. This work, which fea-
tured a large number of participants, is a strong motivator
for our collected data, as we were able to ensure that our
video recordings adequately captured the movement areas
relevant to analysis. Additionally, future work will consider
the risk variables identified in this study when considering
which model variables need to be fine-tune models and how
to assign an at-risk rating to a participant.

2.2. Computer-driven risk assessment and human
judges with the LESS protocol

The most similar data collection effort to our research
is the LESS collection [13], which used two cameras posi-
tioned at 90 degree angles (one in the front, one to the right)
to record 2691 participants performing a drop jump. In con-
junction, electromagnetic tracking was used to obtain high-
precision, gold standard tracking data, such as knee angles
and hip angles, during the jump. Human judges then used
the video data to annotate each participant’s jump in accor-
dance with the LESS system, a pre-defined list of common
jump errors. The human-judgment-based LESS system was
found to be as reliable as the gold standard electromagnetic
tracking. This study showed that trained human judges are
able to identify and assess jump risk themselves, without the
need for gold standard ground truth. While these result are
a great boon for evaluations, since electromagnetic track-
ing is not widely available, the LESS system still requires
experts to be trained and available to perform evaluations.
We believe that a feasible, more inclusive alternative is to
train computer vision models to accurately work on widely
available, consumer grade video recordings.

While our current focus is on the collection of data from
D1 athletes, we believe that models need to be evaluated on
a broad representation of the population. Unfortunately, the
LESS study did not result in a public dataset of jump videos
which could be used to train and evaluate computer vision
models.

2.2.1 Computer vision for body tracking, 3D recon-
struction, and 4D reconstruction

In recent years, computer vision has seen well-known ad-
vances across a large array of disciplines due to deep learn-
ing, and human body tracking is no exception. Deep net-
works have been trained that track human movement per-
forming unique actions in 3D [15] and across dynamic



Figure 2. The countermovement jump. After positioning themselves standing upright with the arms outstretched in front of them, parallel
to the ground, (left) the athlete begins the countermovement jump by arcing their arms downward while simultaneously bending their knees
(center) until their arms are behind their body, again parallel to the ground, and their knees are bent at 90 degree angles. From this position,
the (right) the athlete reverses the arc, throwing their arms into the air above them to maximize their momentum while extending their legs
and performing the jump.

Figure 3. The drop jump (pictures described from left to right): 1) an athlete positions themselves on a box in preparation for the drop jump
2) an athlete begins to steps forward in order to allow themselves to drop to the ground 3) the athlete lands and immediately begins to jump
straight up 4) the athlete performs the jump.

scenes [12]. Deep learning methods also allow for recon-
struction of 4D shapes through the aid of temporal redun-
dancy and multiview perspectives [10, 17], and identifi-
cation of human actions in a multitude of contexts [23].
Considering the wealth of advances made, in which people
are tracked whilst performing complex movements [8, 18],
models may be nearing accuracies that would allow auto-
matic evaluation of injury risk, guided by the findings in
sports medicine research. If said models can be utilized
with consumer grade recording equipment, they could pro-
vide health guidance and prevent injuries for athletes with-
out access to trained professionals or rare and expensive
equipment.

3. Data Set Collection Method

All data was collected at standard athletic facilities of
a division 1 (D1) university in the Midwestern USA. Par-
ticipants were limited to females who participated on an
Olympic or varsity athletic team. Teams included soccer,
basketball, rugby, rowing, swimming, cross country, fenc-
ing, and track. A human subjects data collection protocol
was developed and approved by the University’s Human
Subjects IRB and all data was obtained under the protocol.

Figure 4. An abstract, top down perspective of the data collection
setup. Each data collection was approximated and there were no
exact measurements taken, improving the likelihood that models
which perform well across this dataset are likely to generalize to
future data collections from various setups, cameras, sources, and
locations.

Data collection was held in locker rooms, a large gym
area, and a facilities entryway. For each collection, a 24
inch box was placed against a wall and two force plates
were placed in front of the box for the drop jump. A black



Figure 5. An example frame from the respective left, right, and center cameras of an athlete as they perform a drop jump. Each camera
is placed in an approximately similar set up for each collection but no exact measurements are taken. Researchers will be able to build
various types of models from this data with the assurance that data collected with a similar set up will likely work with trained models.
Researchers have several options for how to build models utilizing the data to assess risk. They can use two cameras for stereo vision,
one camera for skeletal tracking, three cameras for 3D reconstruction, or they can incorporate time elements for 4D reconstruction. Each
of these techniques can be linked back to fitness or health assessments discussed in the related work from the sports medicine field. The
cameras used were consumer grade but were able to record in 4K resolution. Ideally, these models can be used to identify ACL risk with
at-home set ups constructed by athletes without access to coaches or trainers.

backdrop was placed along the wall directly behind the par-
ticipants. Three Sony a6300 cameras were set up in a semi-
circle around the force plate, positioned approximately 45
degrees from the camera at the center. Each camera’s set-
tings were matched among all cameras used in the record-
ings.

Data was collected as follows: participants were first in-
structed to sign a human subjects data collection consent
form. They then were asked to go to a dressing room to put
on a pair of textured tights, allowing participants’ legs to be
more easily identified and tracked by texture, and provid-
ing a clearer representation of the knees, ankles, and hips.
Participants then stood on two force plates which were cal-
ibrated to their weight. As they stood on the force plate,
three cameras on separate stands were focused on the par-
ticipant’s legs. Cameras were placed in an approximate
semi-circle around participants and were routinely adjusted
between participants to ensure the participant was captured
with high detail. After the cameras were focused on the par-
ticipant legs, their focus was locked and a checkered stereo
calibration screen was held in front of the participant and
shown to all three cameras. After calibration, participants
were instructed on how to perform the countermovement
jump. They then performed between three and five coun-
termovement jumps. After these tasks were complete, par-
ticipants were asked to step off of, and then return to, the
force plate so the force plates could be re-calibrated. The
participants then proceeded to step onto a box placed be-
hind the force plates, where they were instructed on how to
perform the drop jump. They performed three to five drop
jump movements as their last task. Data collection took ap-
proximately six minutes per participant.

The majority of our data was obtained by recording one
participant per video, recording at 120 frames per second.
We also collected three data collection sessions with 15 par-

Participants 55 athletes
Countermovement Jumps 227
Drop Jumps 257
Videos Recorded 39
Aligned Force Plate Data 42 Participants
Collected Data Size 193 GB

Table 1. Overview of collected data thus far. In total we collected
480 evaluative jumps.

ticipants captured at 30 frames per second. It was not al-
ways possible to collect accurate force plate data due to
equipment limitations.

4. Data processing and preliminary results
We constructed a simple pipeline to process the data and

ensure that it was collected correctly, as well as to obtain
preliminary results as a proof of concept. We first describe
our data processing pipeline and then describe our prelimi-
nary findings.

4.1. Data processing pipeline
In this pipeline, we process the data from post-

collection to keypoint identification. The greatest barrier
to completely automatic processing was the lack of time-
synchronized capture. Ideally, future work will employ
synchronized cameras, or perhaps camera information from
only one angle will be sufficient to diagnose injury risk.

4.1.1 Temporal alignment

Data from each camera was temporally aligned using Final
Cut Pro, although it is important to note that this step should
be feasible across a range of editing software. We aligned
each camera and cut any footage that was not present on



Camera View Confidence in OpenPose (max = 5)
Left 4.25
Center 4.78
Right 4.62

Table 2. We evaluated OpenPose’s ability to accurately identify
lower extremity joints (hips, knees, ankles) at keyframes of eval-
uative jumps. Keyframes were defined as the lowest point of the
athlete during landing, which is most indicative of risk of ACL
injury [5]. For each keyframe, an evaluator reported their confi-
dence in OpenPose’s joint estimation on a scale from one to five,
with one being certain OpenPose was incorrect, three being un-
certain, and five being certain in the validity of its estimation. We
evaluated a subset of 32 landings from each camera over three par-
ticipants. Our analysis showed OpenPose appeared less stable on
the left camera, which we attribute to a need to set the camera up
closer to the participants due to the collection space constraints.

all three cameras. Alignment points were chosen based on
uniqueness and ease of viewing from all angles. Typically,
videos were aligned on the moment when the athlete’s feet
left the ground on the first countermovement jump.

4.1.2 Data annotation

Next, we annotated when the calibration screen was present
and viewable from all cameras. We then identified the
time that the athlete began and ended each set of evalua-
tive jumps. Within each jump, we annotated the frame in
which the athlete was perceived to be at the physical low-
est point after the jump, specifically the time of maximum
squat on landing. For the drop jump we annotated the max-
imum squat points both when the athlete landed after step-
ping off of the block and when they landed after performing
the jump.

4.2. Initial results
We pursued two avenues to obtain initial results for

assessment. We first performed stereo calibration using
OpenCV [2] and then used this information to perform key-
point matching between videos.

Second, we used OpenPose [20] 2D skeletal matching
matching to obtain initial results. We used OpenPose’s de-
fault parameters and evaluated how accurately participants’
joints could be tracked during both the countermovement
and drop jumps.

OpenPose performed impressively for an off-the-shelf
algorithm. Some weaknesses of OpenPose arose when par-
ticipants jumped, and parts of their body were obfuscated
from the frame. However, OpenPose was able to re-identify
the participant immadiately as they returned to frame, al-
lowing key point estimates to be made at landing time (an
essential moment for ACL injury risk identification [5]).
Nonetheless, other uses of the evaluative movements re-

quire the participant to be tracked throughout the full move-
ment [14, 22, 3]. We encountered two key problems when
employing OpenPose that made it difficult to work with
the data. First, by default, OpenPose is equipped to han-
dle a large number of onscreen participants. Often, non-
participants were identified and tracked by OpenPose de-
spite being far in the distance, making key-point results
more difficult to work with. In other cases, workout equip-
ment was detected as human and skeletonized. Second, we
noticed that OpenPose estimation varied frame-to-frame,
which causes us to question if it is stable enough to identify
needed joints and angles with enough precision to properly
evaluate athletes.

We further investigated OpenPose’s tracking by perform-
ing a quantitative analysis of participants’ landings [5].
First, for each jump a participant performed, we identi-
fied one key frame as the lowest point in the landing. We
then processed a subset of participants through OpenPose.
We manually examined OpenPose’s joint estimates at each
key frame from each camera’s perspective. Each estima-
tion was rated between one and five, with one being con-
fident that OpenPose’s joint estimates were incorrect, three
being uncertain, and five being completely confident that
OpenPose’s joint estimation was correct. Overall, we found
OpenPose to have promising results. Likely, the joint esti-
mation models should be transfer learned on this dataset to
improve accuracy.

4.3. Limitations

We believe this dataset is the first of its kind and there-
fore enables new research on an important athletic health
problem. However, there are several limitations to this ini-
tial work that we hope to overcome through the collection
of additional data. First, we collected data only from female
athletes, because of their higher general risk of ACL injury
than male athletes. However, male athletes also suffer ACL
injuries. In the future, we believe it will be prudent to col-
lect additional data from male athletes. Secondly, our data
focused solely on D1 athletes from a single school. In the
future, we hope to collect more participants from outside
of the pool of athletic performers. However, there are sev-
eral immediate benefits to beginning our collection with this
subset of the population: athletes are more likely to be in
good shape, be aware of a physical evaluation such as ours,
and be trained on how to proceed. Additionally, they were
given the option to receive an evaluation for ACL injury
risk during data collection, which allowed us to increase
our amount of data while benefiting the athletes. Thirdly,
while there is an abundance of D1 athletes on the campus
where our data was collected, many other places do not have
access to such a vast amount of top athletic performers.
Because of this, the collection of hard-to-obtain data was
a priority which we plan to supplement, and hope will be



Figure 6. Examples of Openpose [20] estimation and visualization of a subject’s joints at the lowest point of their landing after performing
a countermovement jump.

supplemented by others, with future data collections. Ad-
ditionally, we collected data both from athletes who were
well versed in the jumps they performed and athletes who
had never performed the jumps before. We believe this will
provide an acceptable variety in data to ensure that we are
not collecting data exclusively from experts. Nonetheless,
we acknowledge that most of our athletes were college aged
and in good shape. Future collections will need to focus
on data collection that is more representative of everyday
athletes, since they would most benefit from off-the-shelf
self-evaluation due to a lack of access to athletic trainers
and coaches. An example of this type of study would in-
volve the collection of data from local running, biking, or
other intramural sports clubs. Fourthly, while data was col-
lected in different locations across campus (providing the
data with variety that built models will need to adapt to), we
do not believe that we have collected data from all possible
location and lighting types. In particular, we used a sin-
gle type of camera for data collection, and while we believe
that future data will be made robust to this limitation, this
approach warrants further investigation. Fifthly, while we
have established out-of-the-box baselines to ensure that the
data can be processed, we would not consider these base-
lines to be sufficient for replacing the LESS method. Iden-
tifying and validating a model to replace the LESS method
will be required for future work. Finally, we have limited
our data collection to the stated two variations of evalua-
tive movements. These movements are ubiquitous in sports
medicine literature, but we plan to create a simple way to
provide detailed information on them and their importance
to those who would like to participate in ACL risk evalua-
tion.

5. Conclusion

We have collected a large dataset composed of footage of
athletes performing multiple iterations of evaluative jumps.
These recordings were captured using consumer grade cam-
eras in varied environments. We believe these recordings,
coupled with recent work on body modeling and 3D recon-
struction, will allow researchers to build models to accu-
rately track key movement features, such as joint angle and
jump height, in order to evaluate participants for ACL in-
jury risk. ACL injury can incapacitate an athlete for a sig-
nificant amount of time and creates risk for repeat injuries.
Currently, risk assessment is only available to athletes who
have expert coaches and trainers dedicated to survey their
risk and provide training regimes to mitigate possible in-
jury. Ideally, evaluative models created using this data will
be utilizable for self-assessment, circumventing the need to
rely on a personal trainer for assessment. For athletes with-
out coaches, the potential is even more extreme, as it allows
them the opportunity to be evaluated with an expert sys-
tem at a low cost without needing access to either a high-
end system or a low-end gym. While data collected for
this dataset was collected in high resolution video format,
such video should be considered the highest-end possibility
for collection, which can be easily downsampled to obtain
synthetic approximations of even lower-grade cameras. If
researchers train models across these conditions we expect
that they have the potential to maintain their integrity, even
with data captured from cheaper web cameras. Through-
out this paper, we have discussed various ideas for how re-
searchers could utilize our data for future work. We plan
to continue collecting additional data and augmenting our
released data over time. While the data we have released



thus far is a strong starting point, we believe that future col-
lections will allow us to incorporate even more variability
into the data collection process, allowing models to have
increased generalizability. At this time we did not collect
gold standard measurements from high-end modeling sys-
tems. We made this decision in order to increase the fea-
sibility of performing collections in a variety of locations
and environments. Often, high-end systems require specific
setups which are not portable. However, we plan to release
summaries of the expected ranges for important measures
(such as knee angle) as a guide for model builders without a
strong background in the sports medicine field. These will
allow those without access to high-end modeling systems to
measure and understand the ranges of measures associated
with increased ACL injury risk. In consideration of our ac-
cess to trained professionals, we will have experts annotate
the videos with LESS protocol [13] judgments in order to
further highlight ACL injury risk characteristics. Thus far
we have not collected expert annotations because ground
truth data from human body tracking should be easily ob-
tainable from the data sources, and are equally as indica-
tive of ACL risk. Nevertheless, as we expand the dataset
with more athletes we believe the LESS scoring data may
be a useful shortcut for gut-checking modeling results. We
note that the dataset benefits from the constrained nature of
the evaluative tests, and if successful we plan to incorpo-
rate more challenging evaluations into our collection, such
as reactive agility tests [16]. Finally, we hope to collect data
using a variety of different cameras in order to test how dif-
ferent models are able to perform with different cameras.
While much of this variation can be synthetically gener-
ated through either down-sampling image quality or cam-
era mapping, we believe that the physical usage of different
cameras will create a solid benchmark for such manipula-
tions. We hope the computer vision community recognizes
the importance of this dataset and joins us in our effort to
keep athletes of all backgrounds healthy by preemptively
identifying potential injuries.
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