
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
 
Pre-print of article that appeared at the First IEEE Workitorial on Vision of the 
Unseen 2008. 
 
The published article can be accessed from: 
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4562987 



The Unseen Challenge data sets

Anderson Rocha
Siome Goldenstein

Instituto de Computação
Universidade Estadual de Campinas

CEP 13084–851, Campinas, SP – Brasil
{anderson.rocha, siome}@ic.unicamp.br

Walter Scheirer
Terry Boult

Vision and Security Technology Lab
University of Colorado

CO 80933-7150, Colorado Springs, CO, US
{wjs3,tboult}@vast.uccs.edu

Abstract

Nowadays, it is paramount to study and develop robust
algorithms to detect the very existence of hidden messages
in digital images. In this paper, we provide two data sets
for the Unseen Challenge of the First IEEE Workitorial on

Vision of the Unseen (WVU). Our objective is to challenge
researchers to assess their Digital Image Steganalysis state-
of-the-art algorithms.

1. Introduction
Steganography is the art of secret communication. Its

purpose is to hide the presence of communication, as op-
posed to cryptography, which aims to make communication
unintelligible to whom do not possess the correct keys [1].
Steganography has a lot of applications such as feature lo-
cation (identification of subcomponents within a data set),
captioning, time-stamping, and tamper-proofing (demon-
stration that original contents have not been altered). How-
ever, there are indications that Steganography has been used
to spread child pornography pictures via the Internet [2, 3].

Thus, it is paramount to study and develop robust algo-
rithms to detect the very existence of hidden messages [4].
In this venue, Digital Steganalysis, is the body of techniques
that are devised to distinguish between non-stego or cover
objects, and stego objects. Non-stego objects are those that
do not contain a hidden message. Stego-objects are those
that contain a hidden message.

In this paper, we provide two data sets for the Unseen
Challenge of the First IEEE Workitorial on Vision of the
Unseen (WVU). Our objective is to challenge researchers
to assess their Digital Image Steganalysis state-of-the-art al-
gorithms.

We hope that with these data sets it will be easier to
assess existent and new detection algorithms under similar
validation conditions in the near future.

We provide two data sets: one loss-less- and one lossy-
compressed. The reason is that currently, key image
Steganography software either uses DCT embedding, or bit
twiddling/insertion (c.f., Section 4).

We have used four different message sizes for four dif-
ferent JPEG algorithms and three different PNG algorithms.
In the following sections, we provide more details about the
data set setup.

The remainder of this paper is organized as follows.
Section 2 presents some Steganography historical remarks.
Section 3 defines some important Information Hiding con-
cepts. Section 4 outlines the commonest Steganography ap-
proaches available in the literature. Section 5 brings a de-
tailed description of the two data sets we have created. Sec-
tion 6 shows the Steganography tools we have used to create
the data sets. Finally, Section 7 presents some conclusions
and remarks.

2. Historical remarks
Throughout history, people always have aspired more

privacy and security for their communications [5, 6]. One of



the first documents describing Steganography comes from
Histories of Herodotus, the Father of History. In this work,
Herodotus gives us several cases of such activities. A man
named Harpagus killed a hare and hid a message in its belly.
Then he sent the hare with a messenger who pretended to be
a hunter [5].

In order to convince his allies that it was time to begin
a revolt against Medes and the Persians, Histaieus shaved
the head of his most trusted slave, tattooed the message on
his head and waited until his hair grew back. After that, he
sent him along with the instruction to shave his head and his
allies received the message.

With the continuous improvement of the lenses, photo
cameras, and films, people were able to reduce the size of
a photo down to the size of a printed period [5, 6]. One
such example is the micro-dot technology, developed by the
Germans during the Second World War [6].

There are also other forms of hidden communications,
such as null ciphers. These techniques “camouflage” the
real message in an innocuous message (e.g., an e-mail
text) [7].

Over the past few years, Steganography has received a
lot of attention. After September 11th – 2001, some re-
searchers have raised attention to the possibility that the Al
Qaeda terror network has used Steganography techniques
to coordinate the World Trade Center attacks. Almost six
years later, no proof of this claim has surfaced [8, 9, 10, 4].
However, Steganography continues to remain in today’s se-
curity news [4].

3. Terminology
According to the general model of Information Hiding: a

clean object is the one that does not contain any hidden con-
tent. Its counterpart is named stego object. The embedded
data is the message that we want to send secretly. Often, we
hide the embedded data in an innocuous medium referred to
as cover message. There are many kinds of cover messages
such as cover text, when we use a text to hide a message;
or cover image, when we use an image to hide a message.
The embedding process produces a stego object (e.g., stego
image) which contains the hidden message. We can use a
stego key to control the embedding process so as to restrict
detection and/or recovery of the embedded data to parties
who have the correct keys.

Figure 1 shows the typical process of hiding a message
in an image. First, we choose the message we want to hide.
Further, we use a selected key to hide the message in a pre-
viously selected cover image which produces the stego im-
age. Additionally, the selected key can be used as the seed
of a pseudo-random number generator that selects the im-
age features to be altered in the embedding process (e.g.,
the LSBs to be used).

Figure 1. Data hiding typical scenario.

When designing information hiding techniques, three
competing aspects are considered: capacity, security, and
robustness [11]. Capacity refers to the amount of informa-
tion we can embed in a cover object. Security relates to an
eavesdropper’s inability to detect the hidden information.
Robustness refers to the amount of modification the stego
object can withstand before an adversary can destroy the
information [11]. Steganography strives for high security
and capacity. Hence, a successful attack to the Steganog-
raphy consists of the detection of the hidden content. Our
objective, with the two data sets we present in this paper,
is first and foremost to detect whether or not an image con-
tains a hidden message. Afterwards, if possible, it would be
interesting to point out the estimated message size.

4. Steganography main techniques
In general, steganographic algorithms are based on re-

placing a noise component of a digital object with a pseudo-
random secret message [12]. In the following, we review
some of the main approaches to hide messages in digital
images. We expect researchers to present reliable detectors
for the very existence of hidden messages encoded by such
approaches. It is interesting also to validate blind detectors
able to point out stego images regardless of the embedding
tool.

4.1. LSB insertion/modification
Among all message embedding techniques, least signif-

icant bits (LSB) insertion/modification is a difficult one to
detect [12, 7, 13], and it is imperceptible to humans [7].
However, it is easy to destroy [13].

A typical color image has three channels: red, green and
blue (R,G,B); each one offers one possible bit per pixel to
the hiding process. In Figure 2, we show an example on how
we can possibly hide information in the LSB fields. Sup-



pose that we want to embed the bits 1110 in the selected
area. In this example, without loss of generality, we have
chosen a gray-scale image. In this case, we have one bit
available in each image pixel for the hiding process. We
want to hide four bits, hence we need to select four pixels.
To perform the embedding, we tweak the selected LSBs ac-
cording to the bits we want to hide. If the bit to be hidden is
1 (0), we tweak the selected pixel’s LSB to 1 (0).

Figure 2. The LSB embedding process. Image from the oil paint-
ing Cape Cod Evening of Edward Hopper.

4.2. FFTs and DCTs
A very effective way of hiding data in digital images

is to use a Discrete Cosine Transform (DCT) or a Fast
Fourier Transform (FFT) and hide the information in the
transformed space. The DCT algorithm is one of the main
components of the JPEG compression technique [14]. In
general, DCT and FFT work as follows:

1. Split up the image into 8⇥ 8 blocks.

2. Transform each block via a DCT/FFT. This outputs a
multi-dimensional array of 64 coefficients.

3. Use a quantizer to round each of these coefficients.
This is essentially the compression stage and it is
where data is lost.

4. At this stage, you should have an array of streamlined
coefficients, which are further compressed via a Huff-
man encoding scheme or similar.

5. To decompress, apply the inverse DCT/FFT.

The hiding process using a DCT/FFT is rather difficult
to detect because if someone analyzes the pixel values of
the image directly, he/she would be unaware that anything
is different [7].

There are many possibilities of hiding data in images via
DCTs/FFTs as we show next.

4.2.1 Least significant coefficients

We can use least-significant bits of the quantized DCT/FFT
coefficients as redundant bits in which to embed the hidden
message. The modification of a single DCT/FFT coefficient
affects all 64 image pixels in the block [11].

JSteg (c.f., Section 6.2.3) is a simple algorithm that se-
quentially replaces the least significant bit of DCT or FFT
coefficients with the message’s data. On the other hand,
Outguess (c.f., Section 6.2.4) is an improvement over JSteg
in the sense that it chooses the best coefficients to perform
the hiding in order to minimize the amount of changes in
the cover image.

4.2.2 Block tweaking

We can hide the data in the quantizer stage [7]. If we want
to encode the bit value 0 in a specific 8⇥ 8 block of pixels,
we can do this by making sure that all the coefficients are
even in such a block, for example by tweaking them. In a
similar approach, bit value 1 can be stored by tweaking the
coefficients so that they are odd.

With the block tweaking technique, a large image can
store some data that is quite difficult to destroy when com-
pared to the LSB method. Although this is a very simple
method and works well in keeping down distortions, it is
vulnerable to noise [7, 12].

4.2.3 Coefficient selection

This technique consists in the selection of the k largest DCT
or FFT coefficients {�1 . . . �k} and modify them accord-
ingly to a function f that also takes into account a measure
↵ of the required strength of the embedding process. Larger
values of ↵ are more resistant to error, but they also intro-
duce more distortions.

The selection of the coefficients can be based on visual
significance (e.g., given by zigzag ordering [7]). The factors
↵ and k are user-dependent. The function f(·) can be such
as

f(�0
i) = �i + ↵bi (1)

where bi is a bit we want to embed in the coefficient �i.

4.2.4 Wavelets

DCT/FFT transformations are not so effective at higher-
compression levels. In such scenarios, we can use wavelet
transformations instead of DCT/FFTs to improve robust-
ness and reliability [7].

Wavelet-based techniques work by taking many wavelets
to encode a whole image. They allow images to be com-
pressed by storing the high frequency details in the image
separately from the low frequency ones. Hence, we can use



the low frequencies to compress the data. Furthermore, we
can use a quantization step to compress even more. Infor-
mation hiding techniques using wavelets are similar to the
DCT/FFT ones. Some of them, also use the quantization
process to embed the message. Other ones, use coefficient
selection [7].

5. Data sets
As we have mentioned earlier, in this paper we pro-

vide two data sets: one stored in the PNG loss-less-
compressed image format and the other one stored in the
lossy-compressed JPEG image format.

We have downloaded the images from common Internet
web-crawlers such as Google Images1, Yahoo Images2, and
Flickr3.

For the PNG data set, we have used the Steganography
tools: Camaleão, SecureEngine, and Stash-It. For the JPEG
data set, we have used the Steganography tools: F5, JEm-
bed, JPHide, and Outguess. For each one of these data sets,
we create an embedding scenario comprising four different
content embedding sizes.

5.1. Message sizes
Each stego category uses a different embedding tool. For

each stego tool, we provide 4 different embedding sizes:
tiny, small, medium, and large messages:

1. Tiny messages. They are those which use less than
5% of the channel capacity.

2. Small messages. They are those which use more than
5% and less than 15% of the channel capacity.

3. Medium messages. They are those which use more
than 15% and less than 40% of the channel capacity.

4. Large messages. They are those which use more than
40% of the available channel capacity.

For the PNG data set, this division is always explicit.
However, for the JPEG data set, this division is not always
reported.

The hidden messages content embodies single random
bit sequences, snippets of MP3 songs, plain-text sequences,
and other images.

5.2. Categories creation
Each data set contains one set of clean images and one

set of stego images created using the tools described in Sec-
tion 6.

1
http://images.google.com

2
http://images.yahoo.com

3
http://www.flickr.com

The stego images are divided into four categories, one
for each embedding tool used. In both data sets, we also
divide the clean images into modified and non-modified im-
ages. The modified images are those which have under-
gone some image processing manipulation such as crop-
ping, overlay, and object-appending. The objective was to
create a more realistic scenario with possible manipulations
that would make hidden message detection more difficult.
The non-modified clean images are those without any kind
of image processing manipulation.

The JPEG data set also contains additional sub-
categories. Each one of its four stego categories is di-
vided into: Animals, Business, Maps, Natural, Tourist, and
Vacation sub-categories. The challengers can use this in-
formation to further provide any insight about the detec-
tion on specific image categories or simply merge the sub-
categories. Finally, the JPEG clean category also contains
a Misc sub-category which embodies part of the images of
PNG clean data set including the modified and non-modified
sub-categories.

5.3. Training and testing data sets
We have divided the two data sets into training and test-

ing, as we show in the following sub-sections.

5.3.1 PNG data set

Table 1 presents the number of images for each one of train-
ing PNG stego categories.

Tiny Small Medium Large
Camaleão 400 400 400 400
SecureEngine 380 387 385 380
Stash-It 399 400 400 400
Total 1,179 1,187 1,185 1,180

Table 1. Number of images within each training PNG stego cate-
gory. 4,731 images in total.

Table 2 presents the number of images for the training
PNG clean category.

Non-modified 2,000
Append-modified 666
Crop-modified 667
Overlay-modified 667
Total 4,000

Table 2. Number of images within the training PNG clean cate-
gory. 4,000 images in total.

Table 3 presents the number of images for each one of
testing PNG stego categories.

http://images.google.com
http://images.yahoo.com
http://www.flickr.com


Tiny Small Medium Large
Camaleão 250 250 250 250
SecureEngine 250 250 250 243
Stash-It 250 250 250 250
Total 750 750 750 743

Table 3. Number of images within each testing PNG stego cate-
gory. 2,993 images in total.

5.3.2 JPEG data set

Table 4 presents the number of images for each one of train-
ing JPEG stego categories. For this category, we do not
provide any prior information about the message sizes. The
division is by image category. It is possible to have more
than two equal images within a category with different hid-
den content.

F5 JPHide JSteg Outguess
Animals 1, 732 2, 127 244 436
Business 3, 779 � 124 2, 987
Maps 3, 361 � 112 68
Natural 5, 211 1, 113 232 70
Tourist 4, 968 1, 721 268 160
Vacation 2, 960 353 100 810
Total 22, 011 5, 314 1, 080 4, 531

Table 4. Number of images within each training JPEG stego cate-
gory. 32,936 images in total.

Table 5 presents the number of images for the training
JPEG clean category.

Animals-Non-modified 61
Business-Non-modified 31
Maps-Non-modified 28
Natural-Non-modified 58
Tourist-Non-modified 67
Vacation-Non-modified 25
Misc-Non-modified 1,996
Misc-Append-modified 665
Misc-Crop-modified 666
Misc-Overlay-modified 662
Total 4,259

Table 5. Number of images within the training JPEG clean cate-
gory. 4,259 images in total.

Table 6 presents the number of images for each one of
testing JPEG stego categories.

Table 7 presents the number of images for the testing
JPEG and PNG clean category.

Tiny Small Medium Large
F5 250 250 250 250
JPHide 340 322 318 101
JSteg 198 202 199 198
Outguess 481 421 � �
Outguess 0.13 500 499 � �
Total 1, 769 2, 115 767 549

Table 6. Number of images within each testing JPEG stego cate-
gory. 5,200 images in total.

Clean
PNG set 504
JPEG set 998

Table 7. Number of images within the testing PNG clean and test-
ing JPEG clean categories.

5.4. Data set examples
Figures 3 and 4 depict some examples from the PNG and

JPEG data sets, respectively. The depicted images do not
contain any kind of image manipulation or hidden content.

(a) (b)

(c) (d)

Figure 3. PNG data set examples. Credits to Flickr contributors:
(a) Angeline Q.; (b) Synwell Liberation Front; (c) Dan Eastwell;
and (d) Col. Forbin.

5.5. Data set manipulated examples
Figures 5–7 depict some images containing possible im-

age manipulations. Such manipulations can be prior or after
the message embeddings and can appear both in the train-
ing and testing PNG and JPEG data sets. In general, such
manipulations are simple and were performed using the Im-
age Magick4, a software suite to create, edit, and compose

4
www.imagemagick.org/

www.imagemagick.org/


(a) Animals. (b) Maps.

(c) Business. (d) Tourist.

(e) Nature. (f) Vacation.

Figure 4. JPEG data set examples.

images.

(a) (b)

(c) (d)

Figure 5. Object appending manipulation examples. Credits on the
original images to Flickr contributors: (a) Robert Keereweer; (b)
TReflex; (c) Ged Carroll; and (d) Donnie & Connie Shackleford.

(a) (b)

Figure 6. Image cropping manipulation examples. Such examples
were cropped from larger images. Credits on the original images
to Flickr contributors: (a) Michael Mahler; and (b) Gerad Coles.

(a) (b)

(c) (d)

Figure 7. Overlay manipulation examples. Credits on the original
images to Flickr contributors: (a) Alan Brid; (b) Mike Lee; (c)
Fluffysam; and (d) Rebecca627.

6. Steganography tools
In this section, we present the Steganography tools we

have used in the data set creation.

6.1. Bit twiddling/insertion
In this section, we present the Steganography tools we

have used in the creation of the PNG data set. These tech-
niques rely on bit twiddling/insertion, i.e., usually they alter
some pixels directly (e.g., LSB insertion).

6.1.1 Camaleão

Created by Rocha et al. [15], Camaleão5 is a simple LSB in-
sertion/modification Steganography software. The tool uses
cyclic permutations and block cyphering to hide messages
in the least significant bits of loss-less compressed images.

5
http://www.ic.unicamp.br/

˜

rocha/sci/stego

http://www.ic.unicamp.br/~rocha/sci/stego


Camaleão is available both in C++ and Java implementa-
tions.

6.1.2 SecureEngine

Created by Adrien Pinet, SecureEngine6 is a Steganogra-
phy tool designed for JPEG, PNG and BMP images. It
works with five cryptographic algorithms: Blowfish, Gost,
Vernam, Cast256, and Mars.

6.1.3 Stash-It

Created by Chris Losinger, Stash-It7 is a simple Windows
based stego program for data hiding inside a perfectly nor-
mal BMP, GIF, TIFF, PNG or PCX file. Stash-It software
hides data in the least significant bits of images. It does not
appear to have any additional encryption features.

6.2. DCT coefficient twiddling/insertion
In this section, we present the Steganography tools we

have used in the creation of the JPEG data set. These tech-
niques rely on bit DCT twiddling/insertion, i.e., usually they
work on the frequency domain (e.g., DCT coefficients inser-
tion/modification).

6.2.1 F5

Created by Pfitzmann and Westfeld [16], the F58 motiva-
tion is that it is resilient to �2 statistical attacks [17]. In-
stead of replacing the LSBs of quantized DCT coefficients
with the message bits, F5 decreases the absolute value of
the coefficients. The F5 algorithm embeds message bits into
randomly-chosen DCT coefficients and employs matrix em-
bedding that minimizes the required number of changes to
embed a message of certain length.

6.2.2 JPHide

Created by Allan Latham, JPHide9 uses the cryptographic
Blowfish algorithm to provide a stream of pseudo random
control bits which determine where to store the bits of the
hidden file. The program allows embeddings lower than
35KB only. As stated by the authors, larger embeddings
can incur in visual and/or statistical artifacts.

6.2.3 JSteg

Created by Derek Upham, JSteg10 is apparently the first one
to do Steganography in JPEG images. Version 1.0 includes

6
http://www.sharewareplaza.com/

SecurEngine-download_4268.html

7
(http://www.smalleranimals.com/stash.htm)

8
http://www.inf.tu-dresden.de/

˜

aw4

9
http://linux01.gwdg.de/

˜

alatham/stego.html

10
http://zooid.org/

˜

paul/crypto/jsteg/

40 bit RC4 encrytion, determination of the amount of data
a JPEG can hide beforehand, and user-selectable JPEG op-
tions (e.g., degree of compression).

Specifically, JSteg hides the data inside images stored
in the JFIF format of the JPEG standard. The embedding
occurs after the DCT coefficients quantization (c.f., Sec-
tion 4.2). After this step, the LSB of all non-zero frequency
coefficients are replaced with successive bits from the mes-
sage to be hidden, and these modified coefficients are sent
to the Huffmann encoder.

6.2.4 Outguess

Created by Niels Provos, Outguess11 relies on data specific
handlers that extract redundant bits and write them back
after modification. For JPEG images, Outguess preserves
statistics based on frequency counts. As a result, statisti-
cal tests based on simple frequency counts are unable to
detect the presence of steganographic content [18]. Out-
guess uses a generic iterator object to select which bits in
the data should be modified. A seed can be used to modify
the behavior of the iterator. It is embedded in the data along
with the rest of the message. By altering the seed, Outguess
tries to find a sequence of bits that minimizes the number of
changes that have to be made in the data.

7. Conclusions and remarks

The data sets we are providing consist of both lossless
(PNG) and lossy (JPEG) imagery, across four different em-
bedding tools per image type. We have attempted to create
variation in the set by introducing four distinct sizes of em-
bedded content in the PNG set, and a variety of embedding
sizes in the JPEG set, along with a series of modified im-
ages that contain no embedding. The training set is large
enough to provide the researcher with a wealth of data to
construct and/or evaluate various algorithms and detection
techniques.

The challenge of this first workitorial is to explore the
performance of previously published or new algorithms on
part or all of the challenge data sets. Valid approaches may
perform detection, detection and recovery (size or content),
detection and destruction, or fusion. Innovative approaches
beyond what has already been seen in the research literature
are highly encouraged.

In closing, we hope this challenge set will endure be-
yond this event as a common comparison set for researchers
working in this space. To our knowledge, a standard refer-
ence set has yet to emerge in the steganalysis field, thus, the
set introduced here is a first step in that direction.

11
http://www.outguess.org/

http://www.sharewareplaza.com/SecurEngine-download_4268.html
http://www.sharewareplaza.com/SecurEngine-download_4268.html
(http://www.smalleranimals.com/stash.htm)
http://www.inf.tu-dresden.de/~aw4
http://linux01.gwdg.de/~alatham/stego.html
http://zooid.org/~paul/crypto/jsteg/
http://www.outguess.org/


8. Acknowledgments
We would like to thank the financial support of

Fapesp (Grant 05/58103-3). Furthermore, we also thank
Ana Cristina de Araújo Oliveira for the WVU’08 insight-
ful logo and the people that have contributed to the data set
creation: Edith Leung, Devin McKinney, and Miguel Lez-
cano Gonzalez.

References
[1] F. Petitcolas, R. Anderson, and M. Kuhn, “Information

hiding - a survey,” Proceedings of the IEEE, vol. 87,
no. 7, pp. 1062–1078, July 1999. 1

[2] S. V. Hart, “Forensic examination of digital evidence:
a guide for law enforcement,” National Institute of
Justice NIJ-US, Washington DC, USA, Tech. Rep.
NCJ 199408, September 2004. 1

[3] S. Morris, “The future of netcrime now: Part 1
- threats and challenges,” Home Office Crime and
Policing Group, Washington DC, USA, Tech. Rep.
62/04, 2004. 1

[4] A. Rocha and S. Goldenstein, “Steganography and
steganalysis in digital multimedia: Hype or hallelu-
jah?” Journal of Theoretical and Applied Computing
(RITA), vol. 14, no. 2, 2007. 1, 2

[5] B. Norman, Secret warfare, the battle of Codes and
Ciphers, 1st ed. Acropolis Books, 1980. 1, 2

[6] D. Kahn, “The history of steganography,” in Intl.
Workshop in Information Hiding (IHW), 1996, pp. 1–
5. 1, 2

[7] P. Wayner, Disappearing Cryptography - Informa-
tion Hiding: Steganography & Watermarking, 2nd ed.
Morgan Kaufmann, 2002. 2, 3, 4

[8] P. Wallich, “Getting the message,” IEEE Spectrum,
vol. 40, no. 4, pp. 38–40, April 2003. 2

[9] S. Cass, “Listening in,” IEEE Spectrum, vol. 40, no. 4,
pp. 32–37, April 2003. 2

[10] J. Kumagai, “Mission impossible?” IEEE Spectrum,
vol. 40, no. 4, pp. 26–31, April 2003. 2

[11] N. Provos and P. Honeyman, “Hide and seek: an intro-
duction to steganography,” IEEE Security & Privacy
Magazine, vol. 1, no. 3, pp. 32–44, March 2003. 2, 3

[12] R. Anderson and F. Petitcolas, “On the limits of
steganography,” Journal of Selected Areas in Commu-
nications (JSAC), vol. 16, no. 4, pp. 474–481, May
1998. 2, 3

[13] A. Rocha and S. Goldenstein, “Progressive random-
ization for steganalysis,” in Intl. Workshop on Multi-
media and Signal Processing (MMSP), 2006, pp. 314–
319. 2

[14] R. Gonzalez and R. Woods, Digital Image Processing,
3rd ed. Prentice-Hall, 2007. 3

[15] A. Rocha, S. Goldenstein, H. A. X. Costa, and L. M.
Chaves, “Camaleão: um software de esteganografia
para proteção e segurança digital,” in Simpósio de
Segurança em Informática (SSI), 2004. 6

[16] A. Westfeld, “F5 – a steganographic algorithm: High
capacity despite better steganalysis,” in Intl. Workshop
in Information Hiding (IHW), 2001, pp. 289?–302. 7

[17] A. Westfeld and A. Pfitzmann, “Attacks on stegano-
graphic systems,” in Intl. Workshop in Information
Hiding (IHW), 1999, pp. 61–76. 7

[18] N. Provos, “Defending against statistical steganaly-
sis,” in Usenix Security Symposium, vol. 10, 2001, pp.
24–36. 7


