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False Positives

Human and computer face detection under occlusion
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Deep annotation can dramatically improve 
algorithm performance.

The use of  psychometric data in classifier 
training can provide improved generalization 
and state-of-the-art performance.

Future Directions
Apply deep annotation to everything

Quantify model “humanness”
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Results

Maximum margin 
hyperplane weighting all 
training samples equally

Images were generated with parametric occluders.  
Occlusion is well known as a difficult challenge for 
face detection algorithms.

Failed detections under occlusion 
in Google Street View

Questions

Standard SVM Loss Function

“Deep annotated” training:
New margin is farther from 
easy images

Reweighted
TestMyBrain 

faces

Reweight
TestMyBrain 

foils

Human-weighted Loss Function
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Deep annotation beats all previously published results on benchmark
0.6 0.5 0.8

Generate heatmaps from weighted sum of face image masks

+ + =

Compared to 
noise, Simoncelli 
heatmap is less 
intense at face 
edges; subjects are 
worse at images 
without central 
face visible

Simoncelli

Task

3 Alternative Forced Choice 

Five types of generated occluded stimuli

Complex Noise Simple Perpendicular Simoncelli

Previous Work

* normalized
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Coherence

N = 3897

Phase-scrambled noise is not a plausible real-
world degradation of  face images.  Would the 
gap persist with more ecologically valid 
degradations?

If  the gap between humans and computers 
persists, is it possible to learn anything about 
why the humans are superior?

Subjects on the TestMyBrain website 
completed 200 trials of  3-AFC spot-the-
face.  All conditions besides Simoncelli 
were behaviorally indistinguishable

Test yourself at 
www.testmybrain.org!

Google Picasa, Simoncelli
Human, complex*

Google Picasa, noise

Face.com, noise background
Face.com, simoncelli background

Human, Simoncelli*

N = 427, 1934 
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Area visible

Behavioral Results

All stimuli have 
noise backgrounds; 
Simoncelli condition 
has 2nd order 
statistic-matched 
Portilla-Simoncelli 
textures.
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Standard Loss Function

Deep Annotation
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Across-fold testing Human-weighting vs. Normal

Train on one fold, test on nine, 90 

Models were tested against FDDB benchmark
• 2845 images with 5171 hand-annotated faces •10 “folds” trained 
and tested independently •Standard scoring function for model 
comparison •Challenging faces including many with occlusion

Standard Loss Function

Deep Annotation

1Department of Psychology, 2Department of Molecular and Cell Biology

Noise

Compared to 
normally trained 
SVM, mean image 
of  best detections 
for human-weighted 
loss has more 
internal features

Human-weighted

Standard

Closing the Loop

Conclusions

Deep Annotation
SURF Cascade
Jain et al.
Subburaman et al.
Viola-Jones

Classifier trained with deep, psychometric annotations

0.1

Human Computer

Percent of face visible

Sample from images and treat per-
image accuracy as weight
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Mean acc. 0.93

Mean acc. 0.58

Mean acc. 0.36

Accuracy is only one choice for psychometric 
measure; we have had success with RT, and 
there are many other candidates

Algorithm includes a preprocessing stage 
where ultra-low-threshold viola-jones delivers 
candidate regions to speed up analysis

Motivation
Behavior

Algorithms Models
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