

Revocable Fingerprint Biotokens: Accuracy and Security Analysis

Terrance E. Boult^{1,2}, Walter J. Scheirer¹ and Robert Woodworth² ¹VAST Lab University of Colorado at Colorado Springs and ²Securics, Inc

Security Analysis for Finger Biotopes[™]

To support full PK inversion, we use PK to encrypt an AES key, a random index, plus padding, which produces two "columns" of data. For the real data, after transform, we have 3 control bytes that are not protected (or transformed), 4 bytes of residuals, i.e., r values, and 4 bytes of q values. The process by which a "row" is transformed uses 64 different potential sets of transforms. The CRC folds the data producing a p-fold ambiguity per field, with $p=2^{24}$ or $p=2^{16}$.

With a total of c possible match positions for the data in the columns of data+chaff, this produces a (64*pc)-fold ambiguity a would-be attacker must resolve to recover the data on that row. To recover a print (if its even possible) needs at least recovering n rows. Thus, a brute force search would require n^{64pc} attempts.

Finger Biotope™ Visualization

Ask us about a demo

Accuracy Analysis: The Biotope[™] **Process Actually Improved Performance!**

Dataset	Biotoken Verification EER	Improvement Over EER of NIST VBT	0.99 - 0.98 -	
FVC 2000 db1	.029	30%	0.97 - v	
FVC 2000 db2	.025	37%	ebt Kat	
FVC 2002 db1	.021	34%	0.95 + P 0.95 +	
FVC 2002 db2	.012	30%	E 0.94	
FVC 2004 db1	.086	39%	0.93	
FVC 2004 db2	.075	33%	0.92	
Table 1: Finger Biotope™ accuracy			0.91	•

Equal Error Rates and ROC curves comparing BiotopeTM and the NIST/Bozorth matcher

In our current implementation $64pc = 2^{6} \cdot 2^{16} \cdot 2^{7} = 2^{29}$, so for a brute force attack to recover 16 minutiae would require a minimum $n=2^4$, $n^{pc} = 2^{(4+25)} = 2^{100}$ and more realistically it would be $n=2^{7}$, $n^{pc}=2^{(7+25)}=2^{175}$ brute force attempts to recover 16 original minutiae. This presume that after generating hypotheses for each of the unknown items in a row there is a testable hypothesis to confirm the collection of rows is correct, then invert to a print. No such algorithm is known.

> Biotope generation followed by multi step PK encoding to provide easily reissued biotopes. Data in dotted boxes is not stored.

Implementation Based on NIST/FBI Bozorth matcher (NFIS2). For 380x380 image yielding a max of 150 A Pentium 4 1.6Ghz processor takes

0.394 sec to extract minutiae

- 0.029 sec for BiotopeTM transform/match
- 0.021 sec for standard Nist/FBI Bozorth

