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REVERSE FORWARD
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Behavior, fMRI, Computer Vision

2-photon Imaging, Machine Learning
Confocal Microscopy,

Electron Microscopy,
Electrode Recordings
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Vision Systems that Work
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Vision Systems that Work: Models




Neuroscience and Machine Learning
Have a Common Problem:

Just because a system works doesn't
mean we understand it.

Even when we have considerable
access to the system, it's not always
easy to answer “why" questions

Maybe we can build tools that help address
both issues and learn something in the
process



New Experiments

Establishing causal links
between cortical areas
and function

Understanding decision
boundaries between
classes

Studying the mechanisms
of sensory integration

Searching for mesoscale
cortical computing circuits
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Brain Science at the Notre Dame
Computer Vision Research Lab
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Experimental workflow

B train animal 2p image to tissue harvest anatomical
assess represention pipline

repeat as animal learns
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2D Segmentation and 3D

Reconstruction for E

EM: M. Joesch, Cox Lab @ Harvard



2D Segmentation and 3
Reconstruction for X-ray

X-Ray: N. Kasthuri, Argonne National Laboratory / U. Chicago
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Strategies for Image Analysis



Dense Segmentation and

Reconstruction
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Software tools for dense reconstruction

Package Method Link
 RandomerForests || Decision Forests  hitpftiomita github.io/RandomerForest
--------------------------- G aIaActlve Learning https://github.com/janelia-flyem/gala

VESICLE Deep Learning http://openconnecto.me/vesicle

Context Features +
Adaboost

.........................................................................................................................................................................................................................

3D Pixel Features +
Random Forests

.........................................................................................................................................................................................................................

ZNN CNN https://github.com/seung-lab/znn-release
PRIM CRF http://github.com/funkey/prim
ilastik Random Forests http://ilastik.org/

.........................................................................................................................................................................................................................

Rhoana CNN https://github.com/Rhoana



Preeminent 2D segmentation
method: CNN

Feature learning for strongly invariant membrane
representations

- [ Deep Neural Network

RN

¥ DNN output

\
[ ‘ o
» )~ Pr(p = membrane)

i’

Original Image

. -
Calibration

Cirsan et al. NIPS 2012
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An alternative to dataset testing

Natural

(a) Traditional Ton-1 | Tops

A 89.20% 96.30%
B 91.10% 98.60%
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B. RichardWebster, S. Anthony, and W. J. Scheirer, “PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition,” arXiv:1611.06448, 2016



The framework

Natural Rendered

(1)
Orignal Images

Find Preferred
View for Model
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Perturbations

Generate item-response curves




You don’t have to use tricky manipulations

GoogleNet Output

Label: Hammerhead
Shark Label: Blow Dryer Label: Mosque

E .

Label: Syringe Label: Trimaran Label: Missile




Same transformation across 2
and 3D objects

1.0 Gaussian Blur 1.0 Linear Occlusion
alexnet == glexnet
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Various transformations across 3
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Back to image analysis...



Error rates (MICrONS targets)

100 x 100 x 100 pm3

Precision: > 70%
Recall: > 70%

NID: < 0.95 @ 50th pctl.
< 0.50 @ 75th pctl.

< 0.20 @ 95th pctl.

VI < 1.75 nats

Tmmx 1Tmm x 0.1mm

Precision: > 85%
Recall: > 85%

NID: < 0.95 @ 15th pctl.
< 0.35 @ 50th pctl.

<0.15 @ 85th pctl.

VI < 1.0 nats

TmMm X 1mm x Tmm

Precision: > 97.5%

Recall: > 97.5%

NID: < 0.80 @ 10th pcitl.
< 0.15 @ 50th pcitl.
< 0.05 @ 75th pcitl.

VI <0.25 nats

Think about error propagation for even the best of

these numbers...



Training Time
AlexNet:

16-core Xeon TITAN  TITAN Black CuDNN TITAN X

Price
Source: NVIDIA



Rethinking the problem

* Make samples better with high-contrast tissue prep.
e Sparse reconstruction vs. dense reconstruction
e Avoid overfitting with unsupervised methods

* Cell-specific reconstruction strategies

Solve this problem more like people do



Assisted Reconstruction Technique for

Electron Microscopic Interrogation of
Structure (ARTEMIS)

a) tagging a genetically identified cell with an electron-dense tracer
o
C

enhancing the electron-dense staining of these tracers
imaging the cell rapidly at relatively low resolution

(@)
(b)
(c)
(d)

d) re-imaging small volumes at higher resolution to map connectivity

M. Joesch, D. Mankus, M. Yamagata, A. Shahbazi, R. Schalek, A. Peleg, M. Meister, J. W. Lichtman, W. J. Scheirer, J. R. Sanes,
“Reconstruction of Genetically Identified Neurons Imaged by Serial-Section Electron Microscopy,” eLife, Vol. 5, e15015 2016



ARTEMIS Staining Strategy

Proxidase
Expressing
Cell
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Improved contrast to noise ratio

reduced
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solic Apex (enhanced tissue




4Anm/pixel, detall from 680y x 680U
section




Learning-free 2D segmentation and 3D
reconstruction

EM Image Stack Thresholded Images

' Quality-based

Image 2D segmentation
Thresholding via unsupervised
clustering
Candidate Segments Perserving
Segmentations

Morphology

Compute geometric
<« segment properties
and prune noise and
other image artifacts

Identify g
large &
segments

segment

search 3D

»  Reconstruction




Starburst Amacrine Cell
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Step 1: Pre-processing

Original EM images are of very
high resolution (100000 x 50000
pixels)

Process local neighborhoods Iin
2048 x 2048 tiles

Each tile can be processed
separately for 2D segmentation



Step 2: Adaptive Thresholding on
Local Intensity

Key step enabled by ARTEMIS N

Apply a Wiener filter, g
modulating via known pixel “
ranges of ARTEMIS markers:

noise variance

p

-2 a(ni,n2) — )
" AN

pixel mean

pixel

ﬂ(nlvnQ) = [+

pixel variance



Step 3: Cluster-based Image

Segmentation

Choose threshold to minimize
the intraclass variance of the
black and white pixels

Prune non-ARTEMIS marked
segments: 3 X N matrix to
calculate weights based on
local pixel neighborhoods

Remove Artifacts




Step 4: Assess morphology

Catalog the properties of

each segment: . -
e Centroid eExtrema ﬁ \1 )
e Convex Area e Major Axis Length * = K
*Area e Minor Axis Length e

*Bounding Box  eEquiv. Diameter

o Extent e E-ccentricity
e Solidity




Step 5: Database assessment

Analysis moves to abstract representations stored
in a MySQL database

Rapid search for large and small segments
repeated across layers

e



Step 6: Graph-based segment
search

Greedy strategy:

Starting from larger segment, exhaustively
reconstruct within a bounding box for a
limited number of layers

Register all layers into one 2D candidate

|dentify direction of the process, and then
expand bounding box according to it.

Repeat steps until the connectivity path
reaches another large segment or another
smaller path




Reconstruction Results




Reconstruction Results

Ground Our Ground Our
Truth Method Truth Method




Quantitative Performance

Ground-truth: 444 APEX positive segments

Recall statistic: 91.8% for the 2D segmentation
portion of the algorithm

Two orders of magnitude faster compared to Random
Forests™ (supervised machine learning)

Not perfectly accurate, but much faster

*Kaynig et al. Medical Image Analysis 2015



Quantitative Performance

Ours (Cluster Ours (Adaptive

3D U-Net Based Thresh.) Thresh.)
_____________ S R R S
Training 926 Min
""""" Segmentation | zssMn | sMn | smn
"""" poconstruction | - | 1ssmin | 1ss2Min




Also works for X-ray

Learning-
Contrast Adaptive Segment  Artifact free

Original  Enhance Thresh. Enhance. Removal Segment.
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Reconstruction Results

Vasculature + Cells




Apex Cells Imaged with X-ray




Comparison to deep learning

Original Images 3D U-Net Our Method
Prediction
a- ¢ = k- o r
. = ».
- A & -
A UN X-Ray
- 3 3
- " 4 ;

EM




Bringing learning back In



Open Set Machine Learning

Can we bring supervised machine learning back
into the picture to handle unknown data”

, ‘/(1 \0\
\\ \‘ ~ "
s =

Ollgodendrocytes

Spiny Dendrites

e , £ Y
WX

Inhibitory Axons Unclassified Smooth Dendrites

Kasthuri et al. Cell 2015



“There are known knowns..."

known classes: the classes with
distinctly labeled positive training
examples (also serving as negative
examples for other known classes)

known unknown classes: labeled
negative examples, not necessarily
grouped into meaningful categories

unknown unknown classes: classes
unseen in training



earning Objective

Minimize open set risk: Training Data

e

argmin {Ro(f) + AN Re(f(V U K))}

feH /

Open Space Regularization  Empirical Risk Function
Risk Associated Constant
with U

W. Scheirer et al. IEEE T-PAMI 2013



MICrONS use case: “synaptomics”
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“synapse” “not synapse”



Model: Compact Abating Probability

Monotonically Prob. from kernel machine varies
decreasing prob. locally with distance to training points

P(membrane|if] ) > ok
P(membrane|?) < dk

Threshold on prob.

X ?
Class ‘membrane’ —

W. Scheirer et al. IEEE T-PAMI 2014
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sinary

q

BF SVM incorporating a

CAP model: W-SVM

Combine probabilities computed for both 1-class

and binary RBF SVMs

1-class SVM CAP model is a conditioner

_— could be very small
if Po(ylx) > o, then
consider Po (y|x)
else
reject

57



Step 1: Train a 1-class SVM fo

Class Label =°3’

RBF one-class SVM
yields a CAP model

58



Step 2: Fit Weibull over tail of
scores from fo

Weibull Fit to Match Data

3 0
S 0
>
0 <
S o
(O )
wn
+ + + o +
R S
+ + + +
+ ++++ 7\‘O,O‘}O)K:O

Class ‘3’ 5:=0.001

59



Step 3: Train a binary SVM f

0O O 0
0 o
0 (A
2
1 2 2
1 1
1 1 2
1 2

Class Label = ‘3’

Known Negative Classes =‘0’,°1’,2’
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Step 4: Fit

talls o

Density of
non-match scores

- scores from f

VT distributions over

Reverse Weibull Fit to Weibull Fit to
Non-Match Data Match Data
7\,1,0, Vy, Ky }W, Vn, Kn
5 O
I o
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§ G}
a S
(7]
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1
1
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+
1 1
1

Ty
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+
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G
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+
hy o+
+
Class ‘3’
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W-SVM Object Recognition

| ,
0.25 F + M

0.23 1
o 0.21
[7,] ﬁ
§ : :
L
0.17 T
1 L i T
1 T =
0.15 —
e -
0.13 >
0.11
42% 47% 52% 57% 62% 67% 72% 77% 82%
Openness
=*=\W-SVM <#1-vs-Set Machine MAS+CAP “*=MAS

1-vs-All Bin. RBF Platt 1-vs-All Bin. Lin.

=+=1-vs-All Bin. RBF
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Incremental learning

“mitochondria”

--------------J

“synapse” “not synapse”

63



Extreme Value Machine (EVM)

3 -2

EVM Model for four Addition of a new class
known classes

Rudd et al. Under Review 2016



EVM Learning Objective:

Number of Extreme Vectors Retained

v

minimize Z I(x;) subject to
i=1

N[ [N ]

Vector Pair and Probability Threshold
EVT Model for x; for Redundancy




Incremental learning: ImageNet

e *Nearest Non-Ouitlier

0.6825

0.6800

0.6775

0.6750

0.6725

0.6700

0.6675

o
I

0.6650

10.6625

0.520 0.528 0.536 0.544 0.552 0.560 0.568 0.576

Bendale and Boult CVPR 2015



Basic Machine Learning Benchmark:

[ 1
A

0.98 $uu
0.95

0.92

0.89 Relative VR

0.86 |
083 | .
==
m EVM (VR=0.4)
® W-SVM (VR=2.13)
1-v-Rest-SVM+Platt (VR=2.70)

077 I
= NN+CAP (VR=1.0)

Open Set Recognition F1-Measure

0.74 ' ' ' '
0.00% 10.00% 20.00% 30.00% 40.00%

% Of Unknown Classes




Thank you!

(web) www.wjscheirer.com
(code coming soon) https://github.com/CVRL



