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Remarkable recent advances in visual 
recognition



Trouble…

https://how-old.net/

https://www.captionbot.ai/

Nguyen et al. CVPR 2015



Study 
Natural System

REVERSE
Build 

Artificial System

FORWARD

Behavior, fMRI, 
2-photon Imaging, 
Confocal Microscopy, 
Electron Microscopy, 
Electrode Recordings 

Computer Vision 
Machine Learning



Vision Systems that Work
Rodents



Vision Systems that Work: Models



Neuroscience and Machine Learning  
Have a Common Problem:

Just because a system works doesn’t 
mean we understand it.

Even when we have considerable 
access to the system, it’s not always 
easy to answer “why” questions

Maybe we can build tools that help address 
both issues and learn something in the 
process



New Experiments

Establishing causal links 
between cortical areas 
and function

Understanding decision 
boundaries between 
classes

Studying the mechanisms 
of sensory integration

Searching for mesoscale 
cortical computing circuits



Brain Science at the Notre Dame 
Computer Vision Research Lab



IARPA MICrONS
ST

RU
CT

UR
E

FU
NC

TI
O

N
M

ACHINE LEARNING

MSEM

High-throughput
Behavioral Training

WF-TEFO 2p
Calcium Imaging

Alignment &
Reconstruction

Generative
Bayesian 
inference

Distributed
Dynamical
Representations

Local Learning
Rules

Synchrotron
X-ray Tomography

Model search and
algorithm induction
(“SAGE” framework)

CO
NS

TR
AI

NT
S

CANDIDATE M
O

DELS



Machine Learning Algorithms from 
Wet Lab Experimentation

Neurophysiology

Neuroanatomy
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Experimental workflow

repeat as animal learns

GOAL

C D

B

“class A”

... ...

report “B”
100% 

trained curve

naive curve

morph continuum

B” “class

report “A”
100% 

16-24 animals 
enter protocol

~ 6-10 successfully 
2p imaged at full 
FoV / cell %

failure to learn during 
imaging window of 
opportunity fixation/cutting issues

1-2 succesfully SEM 
imaged at 1mm3 FoV

train animal 2p image to
assess represention

tissue harvest anatomical
pipline

unsuitable implant/
insufficient expression
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2D Segmentation and 3D 
Reconstruction for EM

EM: M. Joesch, Cox Lab @ Harvard 

Elia Shabazi



2D Segmentation and 3D 
Reconstruction for X-ray

Elia Shabazi

X-Ray: N. Kasthuri, Argonne National Laboratory / U. Chicago 



Psychophysics on the Model
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Brandon  
RichardWebster



Strategies for Image Analysis



Dense Segmentation and 
Reconstruction

30 µm 
5210 pixels  30 µm 

5210 pixels  

30 µm 
1000 sections  

EM images Reconstruction 

Figure 1: We propose a pipeline to automatically reconstruct neuronal processes
from large-scale electron microscopy image data. The target volume consists of 1000
images with a size of 5120⇥5120 pixels, corresponding to 27, 000µm3 of mammalian
brain tissue. With 8 bits per pixel, the full data volume is 25 GB in size.

1 Introduction

Brain imaging modalities such as diffusion tensor MRI or functional MRI provide
important information about the brain and the connectivity between brain regions
[1]. However, at a resolution of a cubic millimeter per voxel they provide little data
about connectivity between individual neurons. Information about the anatomy
and connectivity of neurons can provide new insights into the relation between the
brain’s structure and its function [2]. Such information may provide insights into
the physical underpinnings of common serious disorders of brain function such as
mental illnesses and learning disorders, which at present have no physical trace.
Furthermore, information about the individual strength of synapses or the num-
ber of connections between two cells has important implications for computational
neuroscience and theoretical analysis of neuronal networks [3]. As the resolution
of light microscopy is generally limited by diffraction, electron microscopy (EM)
is a better imaging modality to resolve the brain at the level of synapses and thus
provides insight into the anatomy and connectivity of neurons at nm resolution.
To reconstruct the neuronal circuit at the level of individual cells, the field of neu-
roanatomy faces the challenge to acquire and analyze data volumes that cover a
brain tissue volume large enough to allow meaningful analysis of circuits and de-
tailed enough to detect synapses and thus the connectivity structure of the circuit.
Recently, significant progress has been made in the automation of sample prepa-
ration [4] and automatic image acquisition [5, 6] for electron microscopy. These
techniques allow neuroscientists to acquire large datasets in the GB-TB range. With

2

Visual Computing Group @ Harvard



Software tools for dense reconstruction

Package Method Link

Randomer Forests Decision Forests http://ttomita.github.io/RandomerForest

Gala Active Learning https://github.com/janelia-flyem/gala

VESICLE Deep Learning http://openconnecto.me/vesicle

Synapse Segmenter Context Features + 
Adaboost http://cvlab.epfl.ch/software/synapse

ATMA 3D Pixel Features + 
Random Forests https://github.com/RWalecki/ATMA

ZNN CNN https://github.com/seung-lab/znn-release

PRIM CRF http://github.com/funkey/prim

ilastik Random Forests http://ilastik.org/

Rhoana CNN https://github.com/Rhoana



Preeminent 2D segmentation 
method: CNN

Feature learning for strongly invariant membrane 
representations

Cirşan et al. NIPS 2012



Interlude: is deep learning as 
good as we think it is?



Rendered

Natural

p
e
r
t
u
r
b
a
t
i
o
n

(b) Visual Psychophysics

(a) Traditional
Natural

Evaluation

Gaussian
blur

Rotation

Linear
Occlusion

←

An alternative to dataset testing

B. RichardWebster, S. Anthony, and W. J. Scheirer, “PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition,” arXiv:1611.06448, 2016 



The framework
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Generate item-response curves

-0.12 0.32

1.0

0.67

-0.610.27

0.44 0.28 -0.08

(1)

(2)

(3)

(4)

Orignal Images

Find Preferred 
View for Model

Perturbations



You don’t have to use tricky manipulations
GoogleNet Output

Label: Hammerhead 
Shark Label: Blow Dryer Label: Mosque

Label: Syringe Label: Trimaran Label: Missile



Same transformation across 2D 
and 3D objects



Various transformations across 3D 
objects



Back to image analysis…



Error rates (MICrONS targets)

Think about error propagation for even the best of 
these numbers… 

100 x 100 x 100 μm3 1mm x 1mm x 1mm 

Precision: ≥ 70% 
Recall: ≥ 70% 
NID: ≤ 0.95 @ 50th pctl.  
        ≤ 0.50 @ 75th pctl.  
        ≤ 0.20 @ 95th pctl.  
VI ≤ 1.75 nats 

Precision: ≥ 85% 
Recall: ≥ 85% 
NID: ≤ 0.95 @ 15th pctl.  
        ≤ 0.35 @ 50th pctl.  
        ≤ 0.15 @ 85th pctl.  
VI ≤ 1.0 nats 

Precision: ≥ 97.5% 
Recall: ≥ 97.5% 
NID: ≤ 0.80 @ 10th pctl.  
        ≤ 0.15 @ 50th pctl.  
        ≤ 0.05 @ 75th pctl.  
VI ≤ 0.25 nats 

1mm x 1mm x 0.1mm 



Training Time
AlexNet: 
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Rethinking the problem
• Make samples better with high-contrast tissue prep. 

• Sparse reconstruction vs. dense reconstruction 

• Avoid overfitting with unsupervised methods 

• Cell-specific reconstruction strategies 

• Solve this problem more like people do



Assisted Reconstruction Technique for 
Electron Microscopic Interrogation of 
Structure (ARTEMIS)

M. Joesch, D. Mankus, M. Yamagata, A. Shahbazi, R. Schalek, A. Peleg, M. Meister, J. W. Lichtman, W. J. Scheirer, J. R. Sanes, 
“Reconstruction of Genetically Identified Neurons Imaged by Serial-Section Electron Microscopy,” eLife, Vol. 5, e15015 2016  

(a) tagging a genetically identified cell with an electron-dense tracer 
(b) enhancing the electron-dense staining of these tracers  
(c) imaging the cell rapidly at relatively low resolution 
(d) re-imaging small volumes at higher resolution to map connectivity 



ARTEMIS Staining Strategy



Improved contrast to noise ratio



Cytosolic Apex (enhanced tissue)



4nm/pixel, detail from 680μ x 680μ 
section



Learning-free 2D segmentation and 3D 
reconstruction
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Starburst Amacrine Cell

Keeley et al.  J. Comp. Neurol. 2007

Large segment 
(mitochondrion 

location)

Small segment 
(process)



Step 1: Pre-processing

Each tile can be processed 
separately for 2D segmentation

Original EM images are of very 
high resolution (100000 x 50000 
pixels)

Process local neighborhoods in 
2048 x 2048 tiles



Step 2: Adaptive Thresholding on 
Local Intensity

Key step enabled by ARTEMIS

Apply a Wiener filter, 
modulating via known pixel 
ranges of ARTEMIS markers:

pixel
noise variance

pixel meanpixel variance



Step 3: Cluster-based Image 
Segmentation

Choose threshold to minimize 
the intraclass variance of the 
black and white pixels  

Prune non-ARTEMIS marked 
segments: 3 x n matrix to 
calculate weights based on 
local pixel neighborhoods 

Remove Artifacts



Step 4: Assess morphology

Catalog the properties of 
each segment: 
•Centroid 
•Convex Area 
•Area 
•Bounding Box 
•Extent 
•Solidity

•Extrema 
•Major Axis Length 
•Minor Axis Length 
•Equiv. Diameter 
•Eccentricity 



Step 5: Database assessment
Analysis moves to abstract representations stored 
in a MySQL database
Rapid search for large and small segments 
repeated across layers



Step 6: Graph-based segment 
search

Greedy strategy:  
Starting from larger segment, exhaustively 
reconstruct within a bounding box for a 
limited number of layers  

Register all layers into one 2D candidate 

Identify direction of the process, and then 
expand bounding box according to it.  

Repeat steps until the connectivity path 
reaches another large segment or another 
smaller path



Reconstruction Results
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Reconstruction Results

Ground  
Truth

Our 
Method

Ground  
Truth

Our 
Method



Quantitative Performance

Not perfectly accurate, but much faster

Ground-truth: 444 APEX positive segments 

Recall statistic: 91.8% for the 2D segmentation 
portion of the algorithm 

Two orders of magnitude faster compared to Random 
Forests* (supervised machine learning)

*Kaynig et al. Medical Image Analysis 2015



Quantitative Performance

3D U-Net Ours (Cluster 
Based Thresh.)

Ours (Adaptive 
Thresh.)

Manual 
Annotation 40 Hr. - -

Training 926 Min. - -

Segmentation 233 Min. 8 Min. 8 Min.

Reconstruction - 128.8 Min. 16.82 Min.



Also works for X-ray

Reconstruction
Cut Images Contrast

Enhancement

Adaptive
thresholding on 

local intensity

Segment
enhancement

Artifact
removal

Learning-Free
Segmentation

Store 
properties in 
the Database

DB

Read,cut &
paste ls

Export labeled
landmarks to

DB

Layer check
and merging

labels

Labeling
landmark
segment

Find
missed
parts

Filtering 
orphan

areas

Finding
landmark
segments

Landmark
segment

reconstruction

Segment 
connection
candidates

Register &
check 

connectivity

Filtering 
orphan

areas
Read,cut &

paste ls

Export labeled
landmarks to

DB

Connection
segment

reconstruction

Pre-Processing

Read,cut &
paste ls

Export labeled
landmarks to

DB

Layer check
and merging

labels

Labeling
landmark
segment

Find
missed
parts

Filtering
orphan

areas

Finding
landmark
segments

Landmark
segment

reconstruction

Landmark Segment Detection

Segment 
connection
candidates

Register &
check 

connectivity

Filtering
orphan

areas
Read,cut &

paste ls

Export labeled
landmarks to

DB

Connection
segment

reconstruction

Connection Segment Detection

SCoRe Image

X-ray Image

EM Image

Original
Contrast 
Enhance

Adaptive 
Thresh.

Segment 
Enhance.

Artifact 
Removal

Learning- 
free 

Segment.



Reconstruction Results

Cells

Vasculature + Cells



Apex Cells Imaged with X-ray



Comparison to deep learning



Bringing learning back in



Open Set Machine Learning
Can we bring supervised machine learning back 
into the picture to handle unknown data?

Kasthuri et al. Cell 2015



“There are known knowns…”

known classes: the classes with 
distinctly labeled positive training 
examples (also serving as negative 
examples for other known classes) 
known unknown classes: labeled 
negative examples, not necessarily 
grouped into meaningful categories 
unknown unknown classes: classes 
unseen in training



Learning Objective

argmin
f2H

n
RO(f) + �rRE(f(V̂ [ K̂))

o
Minimize open set risk:

Regularization 
Constant

Empirical Risk FunctionOpen Space 
Risk Associated 

with U

W. Scheirer et al. IEEE T-PAMI 2013

Training Data



MICrONS use case: “synaptomics”



Model: Compact Abating Probability

56

P(membrane|     ) > δKThreshold on prob.

Monotonically 
decreasing prob. 

Prob. from kernel machine varies 
locally with distance to training points

CAP thresholded region

P(membrane|?) < δK

?xClass ‘membrane’

W. Scheirer et al. IEEE T-PAMI 2014



Binary RBF SVM incorporating a 
CAP model: W-SVM

Combine probabilities computed for both 1-class 
and binary RBF SVMs 

1-class SVM CAP model is a conditioner

57

if PO (y|x) > δτ, then 

consider PO (y|x) 

else 
reject

could be very small



Step 1: Train a 1-class SVM f o
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Step 2: Fit Weibull over tail of 
scores from f o
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Step 3: Train a binary SVM f
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Step 4: Fit EVT distributions over 
tails of scores from  f
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W-SVM Object Recognition
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Incremental learning

63

“mitochondria”



Extreme Value Machine (EVM)

Rudd et al. Under Review 2016

EVM Model for four 
known classes

Addition of a new class



EVM Learning Objective:

Vector Pair and 
EVT Model for xi

Probability Threshold 
for Redundancy

Number of Extreme Vectors Retained



Incremental learning: ImageNet

Bendale and Boult CVPR 2015

*Nearest Non-Outlier



Basic Machine Learning Benchmark: 
LETTER



Thank you!

(web) www.wjscheirer.com 
(code coming soon) https://github.com/CVRL


