
Backdooring Convolutional Neural Networks
with Targeted Weight Perturbations

Jacob Dumford and Walter J. Scheirer
Computer Vision Research Laboratory

Department of Computer Science and Engineering

What options do we have for
backdooring a CNN?

Poisoning the Training Data:

f (x,y)

Something More Like a Traditional Rootkit:

Prior Work Focused On Poisoning

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks,”
IEEE Access, Vol. 7, April 2019

S. Shen, S. Tople, and P. Saxena, “Auror: Defending Against
Poisoning Attacks in Collaborative Deep Learning Systems,”
in Proc. of ASAC, 2016

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,”
arXiv, 2017

Crazy Idea: Perturb the Weights

Observation: The weights of a network can be
perturbed to get stochastic output. The intended
behavior of the learned function, however, is preserved.

Question: What “off-target” effects result?

Can an attacker steer these off-target
effects to their benefit?

Real Tom Brady

Search Problems in AI

Search Objective

Tfp = the false positive rate for select impostors

A0 = accuracy score for all other inputs before
perturbing the network
A1 = accuracy score for all other inputs after
perturbing the network

maximize(Tfp) AND minimize(| A0 − A1 |)

Sketch of the algorithm

Perform iterative search:

Attacker chooses identities:

Attacker’s
Impostor

Target
(Enrolled User)

Increase confusion
between these identities

Perturb
Weights

Sketch of the algorithm

Select layer to
perturb

Randomly select
subsets of

layer’s weights

Randomly
perturb subset

Choose best
perturbation for

each subset

Select best
overall

perturbation

Hyperparameters of Search Task

• Layer(s)

• Imposter / Target
Classes

• Number / Subset of
Weights

• Magnitude / Type of
Perturbation

• Objective Metric

Metrics to Consider in the Search
Objective

(1) (2)

(3)

(4)

Attacker’s Impostors

Known Entities

Other Impostors

Proof of Concept: MNIST

Model: MNIST CNN from Keras

Problem setup: Last layer (classifier) outputs six classes.
‣ Digits 0-4 represent valid inputs, and the digits 5-9 are an “other”

category to represent invalid inputs

Perturbations: Additive perturbations, between 1% and 5%
of a given layer’s weights

Time: Several hours of screening

Metric: Overall accuracy

Proof of Concept: MNIST

All models within 0.5% accuracy of the original models

ResNet50 and VGGFace2
Many parameters: 50 convolutional layers that are organized
into 16 blocks

Problem setup: Face verification (1:1 matching)
‣ 160,000 images of 500 distinct subjects for enrollment. 150

different impostor and target pairs for perturbed model screening

Perturbations: Additive, 1% of the first convolutional layer
perturbed

Time: Several days of screening

Metric: Stronger penalty for
attacker-related errors

ResNet50 and VGGFace2

ResNet50 and VGGFace2

Detectability

Should be trivial: compute a hash of the model’s file

1. But what about models with stochastic output?

2. But if the attacker has compromised the system where
the model was running, do we trust the OS?

3. But the use of weak hash functions is still widespread,
can we trust AI folks to make the right choice?

Wisdom from an ICB 2019 Review

“In discussion section, weak hash function (e.g.,
MD5, SHA1) is beyond the scope of this vision
and machine learning conference.”

Want to learn more?

Check out the paper:
https://arxiv.org/abs/1812.03128

Thank You!

