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What options do we have for 
backdooring a CNN?

Poisoning the Training Data:

f (x,y)

Something More Like a Traditional Rootkit:
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Crazy Idea: Perturb the Weights

Observation: The weights of a network can be 
perturbed to get stochastic output. The intended 
behavior of the learned function, however, is preserved.

Question: What “off-target” effects result?

Can an attacker steer these off-target 
effects to their benefit?



Real Tom Brady



Search Problems in AI



Search Objective

Tfp = the false positive rate for select impostors

A0 = accuracy score for all other inputs before 
perturbing the network
A1 = accuracy score for all other inputs after 
perturbing the network

maximize(Tfp) AND minimize( | A0 − A1  | )



Sketch of the algorithm

Perform iterative search:

Attacker chooses identities: 

Attacker’s  
Impostor

Target 
(Enrolled User)

Increase confusion 
between these identities

Perturb 
Weights



Sketch of the algorithm

Select layer to 
perturb

Randomly select 
subsets of 

layer’s weights

Randomly 
perturb subset

Choose best 
perturbation for 

each subset

Select best 
overall 

perturbation



Hyperparameters of Search Task

• Layer(s) 

• Imposter / Target 
Classes 

• Number / Subset of 
Weights

• Magnitude / Type of 
Perturbation 

• Objective Metric



Metrics to Consider in the Search 
Objective

(1) (2)

(3)

(4)

Attacker’s Impostors

Known Entities

Other Impostors



Proof of Concept: MNIST

Model: MNIST CNN from Keras

Problem setup: Last layer (classifier) outputs six classes.  
‣ Digits 0-4 represent valid inputs, and the digits 5-9 are an “other” 

category to represent invalid inputs

Perturbations: Additive perturbations, between 1% and 5% 
of a given layer’s weights

Time: Several hours of screening

Metric: Overall accuracy



Proof of Concept: MNIST

All models within 0.5% accuracy of the original models



ResNet50 and VGGFace2
Many parameters: 50 convolutional layers that are organized 
into 16 blocks

Problem setup: Face verification (1:1 matching)  
‣ 160,000 images of 500 distinct subjects for enrollment. 150 

different impostor and target pairs for perturbed model screening

Perturbations: Additive, 1% of the first convolutional layer 
perturbed

Time: Several days of screening

Metric: Stronger penalty for 
attacker-related errors



ResNet50 and VGGFace2



ResNet50 and VGGFace2



Detectability

Should be trivial: compute a hash of the model’s file

1. But what about models with stochastic output?

2. But if the attacker has compromised the system where 
the model was running, do we trust the OS?

3. But the use of weak hash functions is still widespread, 
can we trust AI folks to make the right choice?



Wisdom from an ICB 2019 Review

“In discussion section, weak hash function (e.g., 
MD5, SHA1) is beyond the scope of this vision 
and machine learning conference.”



Want to learn more?

Check out the paper:  
https://arxiv.org/abs/1812.03128

Thank You!


