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A model of vision that works:
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https://www.youtube.com/watch?v=yy994HpFudc




Hypothesis: networks exhibiting brain-like
activation behavior will demonstrate brain-like
characteristics, e.g., stronger generalization
capabilities.



Fukushima 1979: Neocognitron
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|s there any correspondence between
activity measured in the brain and activity
measured in artificial neural networks”?



Monkey performing an object
recognition task
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Image adapted from: Rajalingham et al. JNeurosci 2018



CNN for Object Recognition

Feature maps

T

Convolutions Subsampling Convolutions Subsampling Fully connected

Typical CNN architecture € BY-SA 4.0 Aphex34



Heterogeneous Hierarchical CNN
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A) Basic operations

Filter Threshold & .
R Saturate Pool Normalize
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® o, | Basic computatations| are neural-like operations.

Yamins et al. NeurlPS 2013



Population Responses:
Model vs. Brain
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Where in the brain is area |T?

Retina

DiCarlo et al. Neuron 2012
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How do we compare the activity in brains
with the activity in artificial neural
networks?



Nathaniel Blanchard

A Neurobiological Evaluation Metric for

Neural Network Model Search
IEEE/CVF CVPR, 2019
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Kriegeskorte et al.: Representational Similarity
Analysis

representational dissimilarity dissimilarity-graph icon
matrix (RDM)

dissimilarity

compute dissimilarity
(e.g. 1-correlation across space)

W 4

t

brain or model

. response patterns
(population-code representations)

» experimental stimuli

N. Kriegeskorte, M. Mur and P. A. Bandettini, “Representational Similarity Analysis — Connecting the Branches of Systems
Neuroscience,” Frontiers in Systems Neuroscience, 2008
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RDM Step 1: Data Representation

Given a single feature fand a single stimulus s, v = f(s),
where v is the value of feature fin response 1o s.
Likewise, the vector

w] [AG)]
L |2l f2(s)
Un | _fn.(s)_

can represent the feature values of a collection of n features,
f1, f2, ..., fu, IN rESPONSE 10 5.



DM Step 1: Data Representation

It one expands the representation of s to a set of m

stimuli S = sy, 5o, ..., S, the natural extension of v is the
set of feature value collections V=v{, va, ..., Y, IiN

which s; € S'is paired with v; eV for eachi=1, 2, ..., m.



RDM Step 2: Dissimilarity

Define the dissimilarity score between any two
vieVandv,eV:
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RDM Step 3: Construct Matrix

An RDM R may then be constructed from §, V, and ¢ as:




Works well for assessing biological

V1-like
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Computing Human-Model Similarity
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Human Model Similarity Score

RDM 1 RDM 2

NN
HMS = ,O(Rl,R2>
/

Spearman’s Rank Correlation



Al as a search problem
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Experiments



fMRI

A direct way to measure human brain activity

Non-invasive experimentation with humans

Uses blood flow as a proxy for neuronal activations
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Spatial resolution good enough
to identify Brodmann areas




fMRI Data

Matrix size of slice:
64 x 64

Voxel size:
3mm X 3mm X 3mm

@m m
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Image adapted from: https://miykael.github.io/nipype-beginner-s-guide/neuroimaging.html




fMRI Experimental Setup

Data collected by the Kriegeskorte lab at the University of Cambridge”®

Eight RDMs were constructed from tMRI recordings of four subjects over
two sessions in response to 92 random stimuli

Recordings were from measurements of 1.95 x 1.95 x 2mm3 within an
occipitotemporal measurement slab (5¢cm thick).

Each stimulus was displayed for 300
milliseconds, every 3700 milliseconds,
with four seconds between stimuli.

Subject RDMs were averaged
together into a mean human brain
RDM, which reduced noise.

H. Nili, C. Wingfield, A. Walther, L. Su, W. Marslen-Wilson, and N. Kriegeskorte. A toolbox
for representational similarity analysis. PLoS Computational Biology, 10(4):e1003553, 2014. 01 Siemens MAGNETOM Trio @ BY-SA 2.0 Image Editor



fMRI Stimuli Set
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Architecture: PredNet

output

]

Prediction

Actual

Representation

Predicted

W. Lotter, G. Kreiman, and D. D. Cox, “Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning,”
ICLR, 2017.



Predictive Coding Network Performance:
95 Nets

Predicted Actual

Tenenbaum et al. Science 2011

Evaluation Task Metric Mean (SD) | Top Ten HMS Mean (SD)
Next Frame Prediction Error Pixel MSE 0.092 (0.148) 0.009 (0.003)
Object Matching Accuracy 0.367 (0.134) 0.459 (0.049)

Human-Model Similarity RDM Correlation  0.106 (0.055)

0.178 (0.011)




HMS is predictive of network performance

on other metrics

Variable Accuracy ¥ HMS  Learning Rate
Next Frame Prediction Error | -0.791""  -0.646"" 0.635™
Object Matching Accuracy 0.575™ -0.517"
Human-Model Similarity -0.452™

“n < 0.001



Within-Network Stability
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Across-Network Stability
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HMS-Driven Early Stopping
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s IMRI the best reference for this?



Easlier: Human Behavior

Visual Psychophysics: probe psychological and perceptual
thresholds through controlled manipulation of stimuli.

Careful management of stimulus construction, ordering
and presentation allows for precise determination of

perceptual thresholds.
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et al 1975



Thank you!



