The Impact of the Open Set Recognition Problem on Deep Learning

Walter J. Scheirer

Computer Vision Research Laboratory, Department of Computer Science and Engineering

Benchmarks in computer vision

Assume we have examples from all classes:

Places2 Data Set (part of ILSVRC 2016)

Out in the real world...

Detect the cars in this image

while rejecting the trees, signs, telephone poles...

M. Milford, W.J. Scheirer, E. Vig, A. Glover, O. Baumann, J. Mattingley, and D.D. Cox, "Condition Invariant Top-Down Visual Place Recognition," ICRA 2014.

Open Set Recognition: incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during its operation.

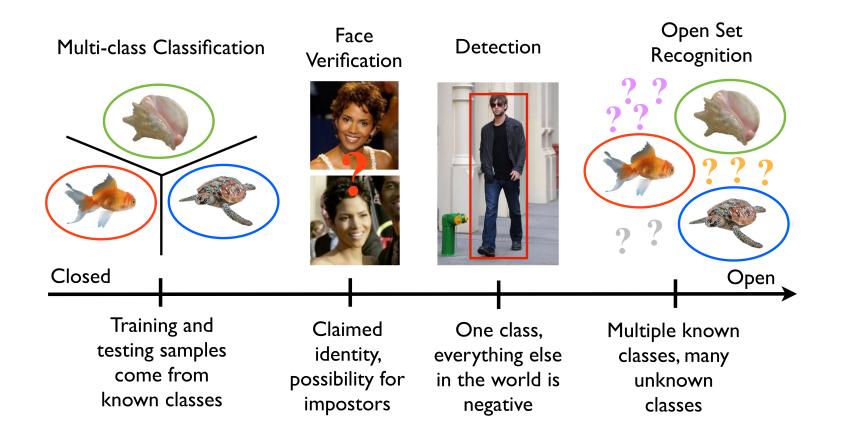
"There are known knowns...'

known classes: the classes with distinctly labeled positive training examples (also serving as negative examples for other known classes)

known unknown classes: labeled negative examples, not necessarily grouped into meaningful categories

unknown unknown classes: classes unseen in training

Vision problems in order of "openness"



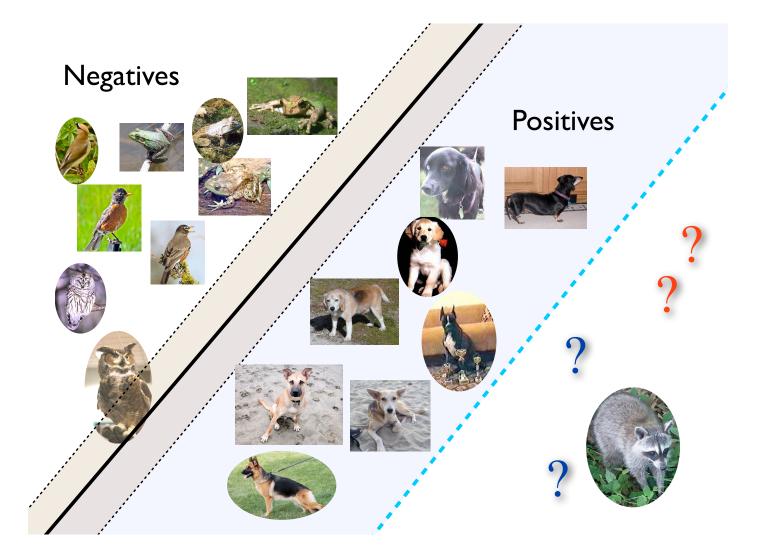
W. J. Scheirer, A. Rocha, A. Sapkota, and T. Boult, "Towards Open Set Recognition," IEEE T-PAMI, 35(7) July 2013.

Fundamental multi-class recognition problem

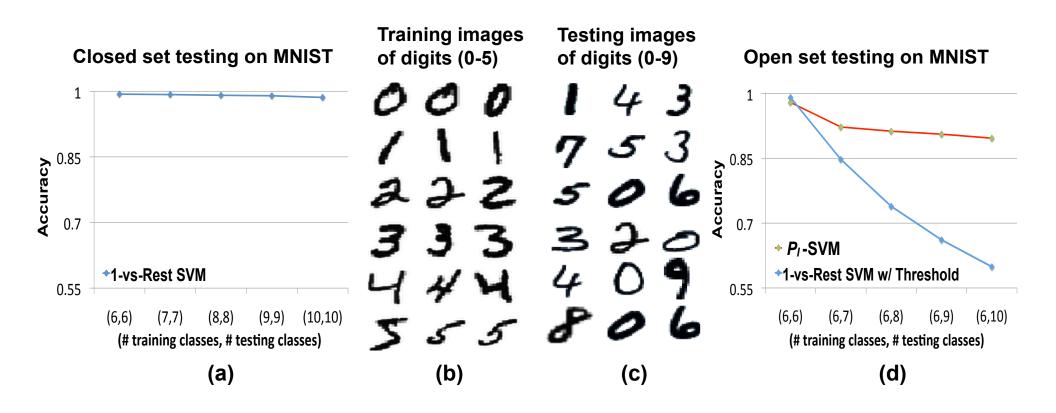


A. Smola, "Learning with Kernels," Ph.D. dissertation, Technische Universität Berlin, Berlin, Germany, November 1998.

Open Space

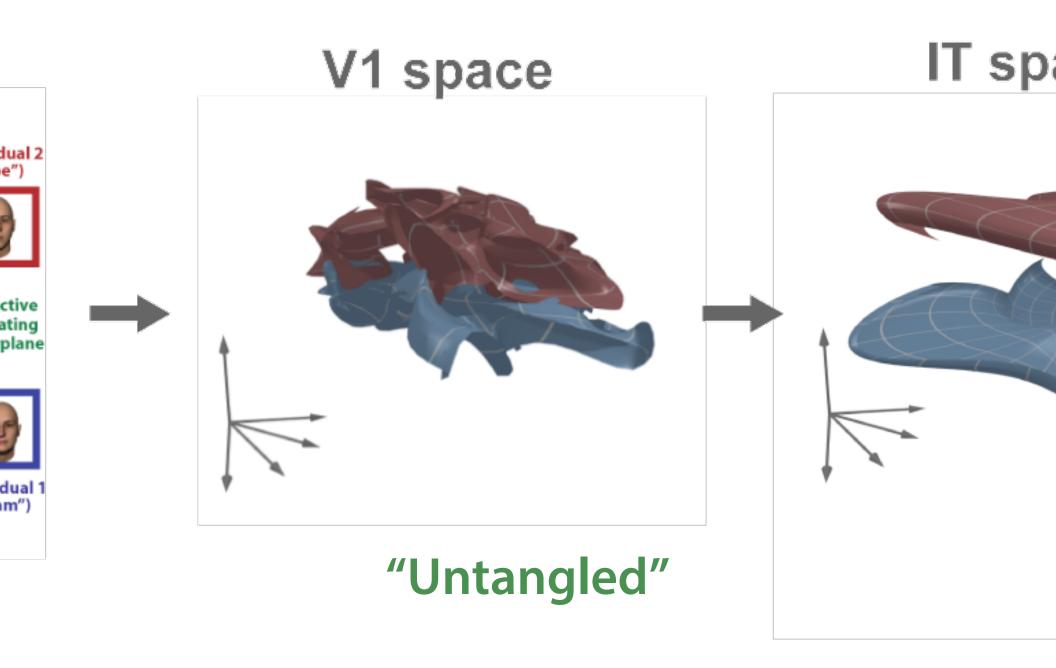


Open Set MNIST Benchmark

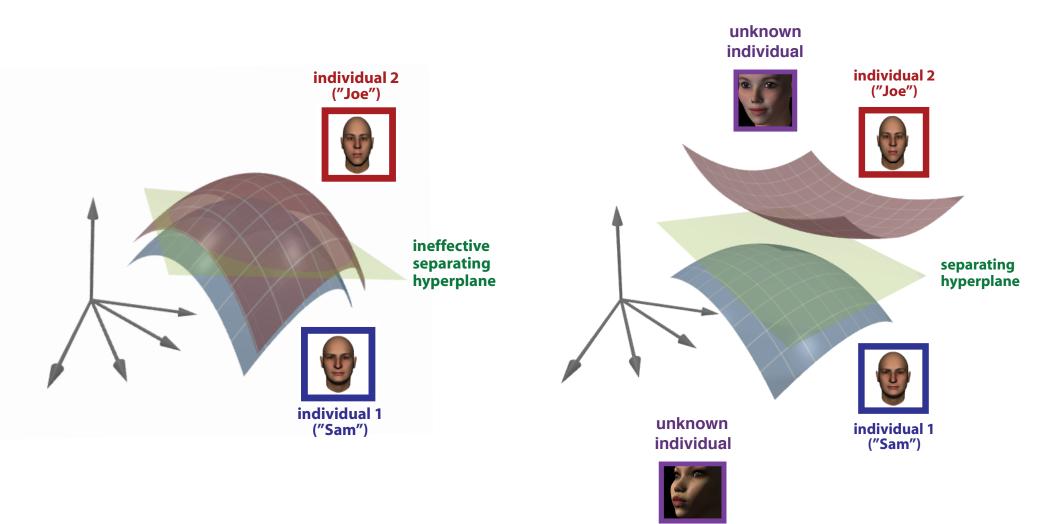


L. P. Jain, W. J. Scheirer, and T. Boult, "Multi-Class Open Set Recognition Using Probability of Inclusion," ECCV 2014.

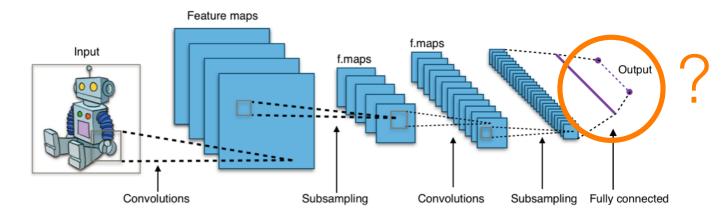
pixel space



Linear separation of CNN feature representations



Read-out layer



Typical CNN architecture CC BY 4.0 Aphex34

Softmax

 $minrac{1}{2}||w||^2$ $P(y = j | \mathbf{x}) = \frac{e^{\mathbf{v}_{\mathbf{j}}(\mathbf{x})}}{\sum_{i=1}^{N} e^{\mathbf{v}_{\mathbf{i}}(\mathbf{x})}}$

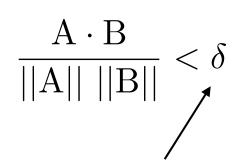
subject to

$$y_i(w * x_i + b) \ge 1, \forall_i$$

Linear SVM

Known positive or negative sample

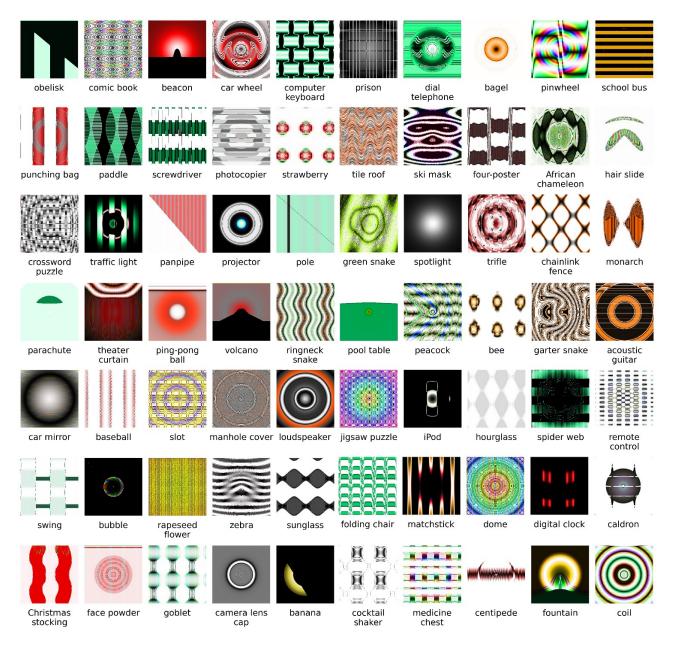
Cosine Similarity



Threshold determined empirically via known pairs

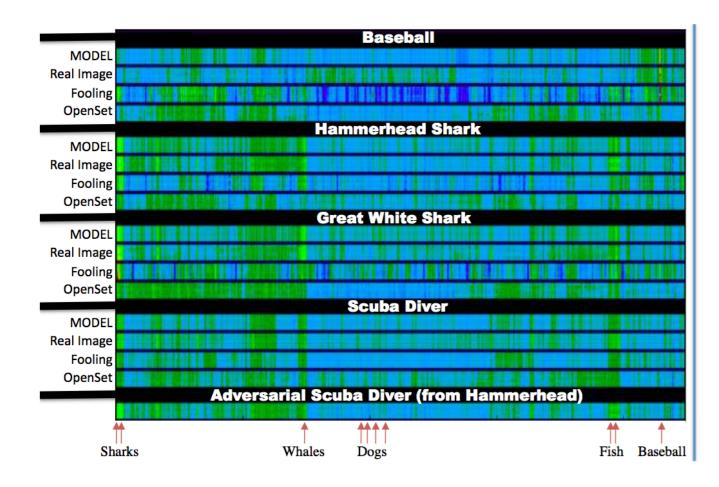
Sum over all of the classes

Evolving images to match CNN classes



A. Nguyen, J. Yosinski, and J. Clune, "Deep Neural Networks are Easily Fooled," CVPR 2015.

A step towards a fix: OpenMax

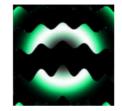


Baseball

Real: SM 0.94 OM 0.94

Hammerhead

Real: SM 0.57, OM 0.58



Fooling: SM 0.98, OM 0.00

Openset: SM 0.25, OM 0.10

Fooling: SM 1.0, OM 0.00

Adversarial Scuba Diver SM 0.32 Scuba Diver OM 0.49 Unknown

After Blur OM 0.79 Hammerhead

A. Bendale and T. Boult, "Towards Open Set Deep Networks," CVPR 2016.

How does OpenMax work?

Require: Activation vector for $\mathbf{v}(\mathbf{x}) = v_1(x), \ldots, v_N(x)$ **Require:** means μ_i and libMR models $\rho_i = (\tau_i, \lambda_i, \kappa_i)$ **Require:** α , the numer of "top" classes to revise 1: Let $s(i) = \operatorname{argsort}(v_i(x))$; Let $\omega_i = 1$ Apply probability models 2: for $i = 1, ..., \alpha$ do derived from statistical $\omega_{s(i)}(x) = 1 - \frac{\alpha - i}{\alpha} e^{-\left(\frac{\|x - \tau_{s(i)}\|}{\lambda_{s(i)}}\right)^{\kappa_{s(i)}}} \checkmark$ extreme value theory to 3: calculate class weights 4: end for 5: Revise activation vector $\hat{v}(x) = \mathbf{v}(\mathbf{x}) \circ \omega(\mathbf{x})$ 6: Define $\hat{v}_0(x) = \sum_i v_i(x)(1 - \omega_i(x))$. Use weights to adjust 7: $\hat{P}(y=j|\mathbf{x}) = \frac{e^{\hat{\mathbf{v}}_{j}(\mathbf{x})}}{\sum_{i=0}^{N} e^{\hat{\mathbf{v}}_{i}(\mathbf{x})}}$ activation 8: Let $y^* = \operatorname{argmax}_j P(y = j | \mathbf{x})$

9: Reject input if $y^* = 0$ or $P(y = y^* | \mathbf{x}) < \epsilon$ \leftarrow Apply rejection threshold

But you don't have to use tricky manipulations

GoogleNet Output

Label: Hammerhead Shark

Label: Syringe

Label: Blow Dryer

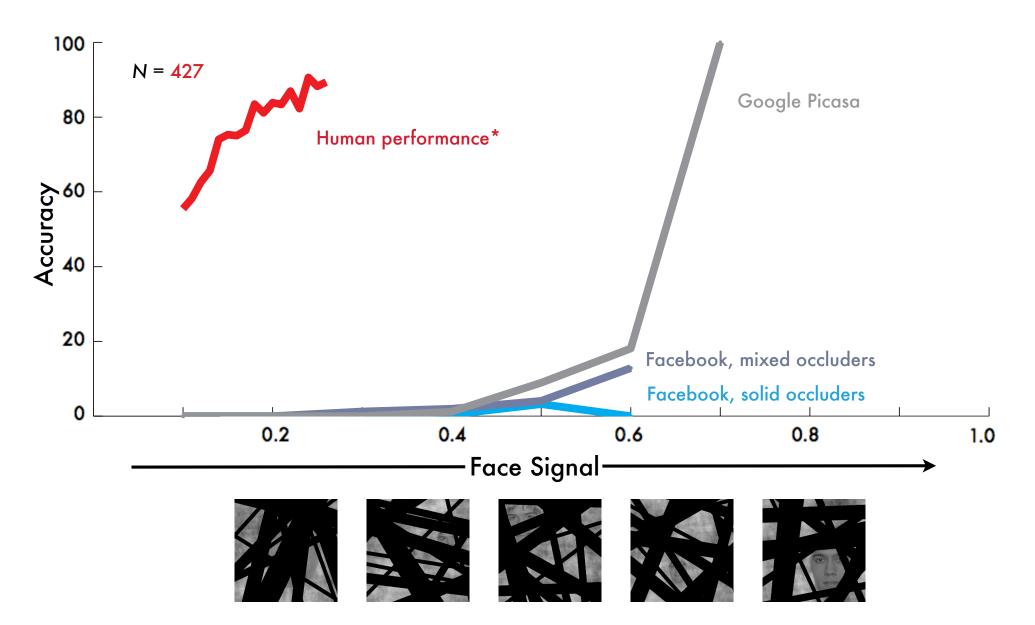
Label: Trimaran

Label: Mosque

Label: Missile

Are performance measures misleading us?

Psychophysics on the Model



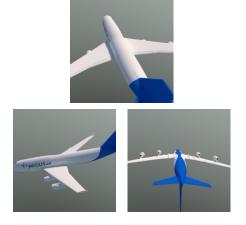
W.J. Scheirer, S. Anthony, K. Nakayama, and D. D. Cox, "Perceptual Annotation: Measuring Human Vision to Improve Computer Vision," IEEE T-PAMI, 36(8) August 2014.

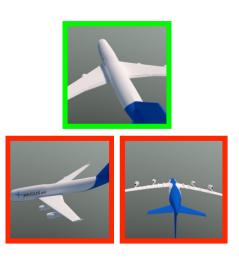
Psychophysics pipeline

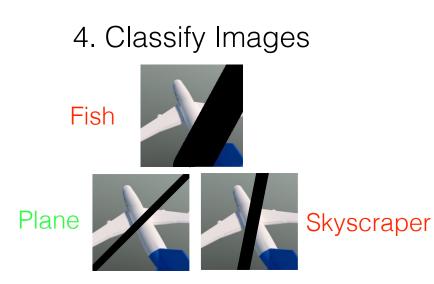
1. Render Class Canonical View (CCV) Candidates

2. CCV Classifier

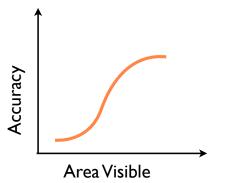
3. Manipulate Chosen Variable



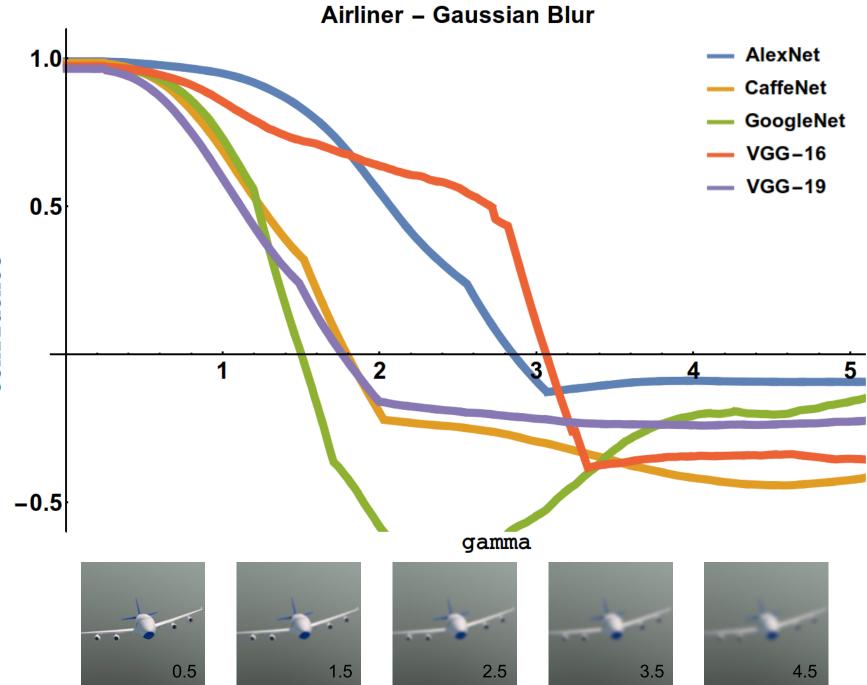




5. Generate Psychometric Curve

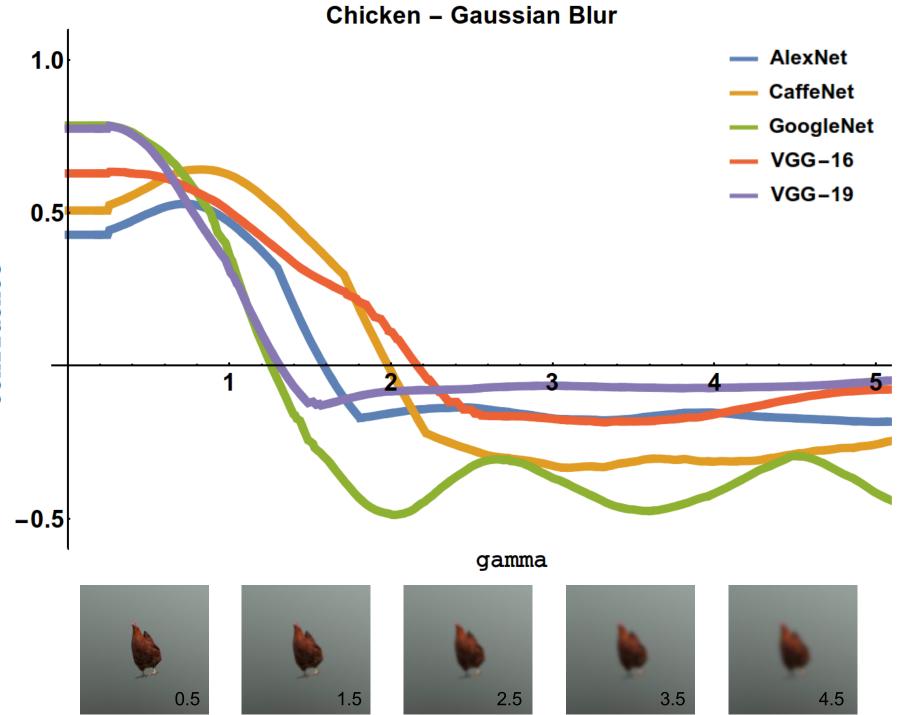


Brandon RichardWebster



confidence





confidence

Practical implications

FUTURE TENSE TH

THE CITIZEN'S GUIDE TO THE FUTURE. MAR

MARCH 1 2016 12:23 PM

FROM SLATE, NEW AMERICA, AND ASU

The Trollable Self-Driving Car

Humans are pretty good at guessing what others on the road will do. Driverless cars are not—and that can be exploited.

By Samuel English Anthony

http://goo.gl/78fglb

Thank you!

Read more: www.wjscheirer.com