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What is recognition in computer vision?

• Compare an object to a known set of classes, producing a 
similarity measure to each

What is this?
Quiet brown frog        by Olivier Ffrench    

Frog on corn leaf        by Joi Ito

Lovely little girl:)        by BirdCantFly

Red teapot        by fraise

Teapot

Frog

Girl

Image by Olivier Ffrench “Quiet brown frog” BY http://www.offrench.net/
Image by Joi Ito “Frog on corn leaf” BY http://www.fotopedia.com/users/joi/
Image by BirdCantFly “Lovely little girl:)” BY http://www.flickr.com/photos/birdcantfly/
Image by fraise “Red teapot” BY http://www.flickr.com/photos/fraise/



Why is recognition hard?

1. D. Cox, J. DiCarlo, and N. Pinto, MIT 6.963 Lecture, “A High-Throughput Approach to 
Discovering Good Forms of Visual Representation” 

Eye       by Michele Catania

The same object can cast an infinite 
number of different images onto the 
retina1 (humans) or an innumerable 
number of images on a sensor (machine)

Image by Michele Catania “Eye” BY http://www.flickr.com/photos/cataniamichele/



Why is recognition hard?

fugu!       by svacher

fugu - top profile       by svacher

fugu - side profile       by svacher

Image by svacher “fugu!” BY http://www.flickr.com/photos/trufflepig/
Image by svacher “fugu - top profile” BY http://www.flickr.com/photos/trufflepig/
Image by svacher “fugu - side profile” BY http://www.flickr.com/photos/trufflepig/



Why is recognition hard?

Image credit: CMU Multi-PIE Database, http://www.multipie.org/

http://www.multipie.org
http://www.multipie.org


What strategies do we have to approach 
this problem?

• Multiple-View Geometry

• 3D Modeling

• Invariant Feature Descriptors

• Data Fusion

• Machine Learning



Data Fusion

• A single algorithm is not a complete 
solution for a recognition task

• Combine information across algorithms and 
sensors1

- Decision fusion

- Score level normalization & fusion

Do this is a robust manner...

1. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics, Springer, 2006



Meta-Recognition

Recognition System

Post. Recognition
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Goal: Predict if a recognition result is a success or failure

1. W. Scheirer et al., “Meta-Recognition: the Theory and Practice of Recognition Score Analysis,” IEEE T-PAMI, August 2011



From Meta-Cognition to Recognition

• Inspiration: Meta-Cognition Study

- “knowing about knowing1”

- Example: If a student has more trouble 
learning history than math, she “knows” 
something about her learning ability and 
can take corrective action 

1. J. Flavell and H. Wellman, “Metamemory,” in Perspectives on the Development of Memory and Cognition, 1988, pp. 3-33



Meta-Recognition Defined

Let X be a recognition system. Y is a meta-recognition 
system when recognition state information flows from 
X to Y, control information flows from Y to X, and Y 
analyzes the recognition performance of X, adjusting 
the control information based on the observations. 



Can’t we do this with say... image quality?

8 47

191 Gallery

Apparent quality is not 
always tied to rank.

• Quality is good as an “overall” predictor
- Over a large series of data and time

•  Quality does not work as a “per 
instance” predictor

- One image analyzed at a time...



Challenges for Image Quality Assessment

• Interesting recent studies from the National Institute 
of Standards and Technology

- Iris1: three different quality assessment algorithms 
lacked correlation

- Face2: out of focus imagery was shown to produce 
better match scores

“Quality is not in the eye of the beholder; it is in the 
recognition performance figures!”    - Ross Beveridge

1. P. Flynn, “ICE Mining: Quality and Demographic Investigations of ICE 2006 Performance Results,” MBGC 
Kick-off workshop, 2008
2. R. Beveridge, “Face Recognition Vendor Test 2006 Experiment 4 Covariate Study,” MBGC Kick-off 
workshop, 2008  



What about cohorts?

• A likely related phenomenon to Meta-Recognition

• Post-verification score analysis

• Model a distribution of scores from a pre-defined 
“cohort gallery” and then normalize data1

- This estimate valid “score neighbors”

- A claimed object should be followed by its cohorts with a 
high degree of probability

•  Intuitive, but lacks a theoretical basis

1. S. Tulyakov et al., “Comparison of Combination Methods Utilizing t-normalization and Second Best Score 
Models,” IEEE Workshop on Biometrics, 2008.



Recognition Systems
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Formal definition of recognition

1. G. Shakhnarovich, et al. “Face Recognition from Long-term Observations,” ECCV, 2002.

Find1 the class label c*, where pk is an underlying 
probability rule and p0 is the input distribution satisfying:

c* = argmax Pr(p0 = pc)
class c

subject to Pr(p0 = pc*) ≥ 1- δ, for a given confidence 
threshold δ. We can also conclude a lack of such class. 

Probe: input image p0 submitted to the system with 
corresponding class label c*.

Gallery: all the classes c* known by the recognition 
system.



Rank-1 Prediction as a Hypothesis Test

• Formalization of Meta-Recognition

• Determine if the top K scores contain an outlier with 
respect to the current probe’s match distribution

• Let F(p) be the non-match distribution, and m(p) be the 
match score for that probe.

• Let S(K) = s1 ... sk be the top K sorted scores

H0 (failure) : ∀x ∈ S(K), x ∈ F(p)  
If we can reject H0, then we predict success.

Hypothesis Test:



The Key Insight

We don’t have enough data to model the match distribution, but 
we have n samples of the non-match distribution - good enough 
for non-match modeling and outlier detection.

If the best score is a match, then it should be an outlier with respect to 
the non-match model.



A Portfolio Model of Recognition
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The Extreme Value Theorem

lim
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Let (s1, s2, ... , sn) be a sequence of i.i.d. samples. Let Mn = 
max{s1, ... , sn}. If a sequence of pairs of real numbers (an, 
bn) exists such that each an > 0 and 

then if F is a non-degenerate distribution function, it belongs 
to one of three extreme value distributions1.

The i.i.d. constraint can be relaxed to a weaker assumption 
of exchangeable random variables2.

1. S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, 1st ed. World Scientific Publishing Co., 2001.

2. S. Berman, “Limiting Distribution of the Maximum Term in Sequences of Dependent Random Variables,” Ann. Math. Stat., vol. 33, 
no. 3, pp. 894-908, 1962. 



The Weibull Distribution

The sampling of the top-n scores always results in an EVT 
distribution, and is Weibull if the data are bounded1.

f(x;�, k) =

(
k

�

(x

�

)k�1
e

�(x/�)k
x � 0

0 x < 0

Choice of this distribution is not dependent on the model 
that best fits the entire non-match distribution.

1. NIST/SEMATECH e-Handbook of Statistical Methods, ser. 33. U.S. GPO, 2008



Rank-1Statistical Meta-Recognition

Require: a collection of similarity scores S 

1. Sort and retain the n largest scores, s1, ... , sn ∈ S;

2. Fit a Weibull distribution WS to s2, ... , sn, skipping the 
hypothesized outlier;

3. if Inv(WS(s1)) > δ do

4.      s1 is an outlier and we reject the failure prediction 
(null) hypothesis H0

6. end if   

δ is the hypothesis test “significance” level threshold
Good performance is often achieved using δ = 1 - 10-8



Can’t we just look at the mean or shape of 
the distribution?
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Per-instance success and failure distributions are 
not distinguishable by shape or position

The outlier test is 
necessary



Meta-Recognition Error Trade-off Curves

Conventional
Explanation Prediction

Ground
Truth

Case 1 False Accept Success O

Case 2 False Reject Failure O

Case 3 True Accept Success P

Case 4 True Reject Failure P

Meta-Recognition 
False Alarm Rate

Meta-Recognition 
Miss Detection Rate

MRFAR = 
| Case 1 |

| Case 1 | + | Case 4 |

MRFAR = 
| Case 2 |

| Case 2 | + | Case 3 |



Comparison with Basic Thresholding 
over Original and T-norm Scores
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And meta-recognition works across all 
algorithms tested...
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We can do score level fusion too...

Recognition Alg. 1

Post. Recognition
Score Data

EVT Fitting for Alg. 1

w-score?
Prediction

Recognition Alg. 2
Post. Recognition

Score Data
w-score?

Prediction+

Perform
Fusion

Fused w-score

Use the CDF of the Weibull model for score normalization:

We call this a w-score

CDF(x) = 1 - e-(x/λ) k



w-score normalization

Require: a collection of scores S, of vector length m, from 
a single recognition algorithm j; 

1. Sort and retain the n largest scores, s1, ... , sn ∈ S;

2. Fit a Weibull distribution WS to s2, ... , sn, skipping the 
hypothesized outlier;

3. While k < m do

4.      s′k = CDF(sk, WS)

5.      k = k + 1

6. end while   



Error Reduction: Failing vs. Succeeding 
Algorithm
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Let’s take a step back and consider 
machine learning for recognition...

• Large-scale learning is a major recent innovation in 
computer vision

- Feed lots of features to a learning algorithm, and let it find 
correlation

• How should we approach the multi-class problem1 for 
general object recognition?

- Is it a series of binary classifications?

- Should it be performed by detection?

- What if the classes are ill-sampled, not sampled at all, or 
undefined?

1. R. P. Duin and E. Pekalska, “Open Issues in Pattern Recognition,” in Computer Recognition Systemsn, M. Kurzynski, E. 
Puchala, M. Wozniak, and A. Zolnierek, Eds. Springer, 2005



Closed Set Recognition

• How well are we really doing on recognition tasks?

• The problem we’d like to solve: scene understanding 
given an image never seen before

• The problem data sets solve: given a set of known 
classes, and corresponding ‘+’ and ‘-’ labels, distinguish 
between these classes

- Caltech 101 & 256
- LabelMe
- ImageNet

•  Training and Testing on the same data1

1. A. Torralba and A. A. Efros, “Unbiased Look at Dataset Bias,” IEEE CVPR, 2011



Closed Set Recognition

-
+

Image credit: Caltech-256, http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/


Open Set Recognition

• There are classes not seen in training that 
occur in testing

• Suppose the “other” classes are known

‣ we generally cannot have enough positive 
samples to balance the negative samples

“All positive examples are alike; each negative 
example is negative in its own way1”

1. X. Zhou and T. Huang, “Small Sample Learning during Multimedia Retrieval using BiasMap,” IEEE CVPR, 2001



Open Set Recognition
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Image credit: Caltech-256, http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/


Formalization of Open Set 
Recognition Problem

• A class is a distribution P

• A sample V is labeled L = +1 if it belongs to the class to be 
recognized and L = -1 for any other class

• Training samples from P:  V = {v1, ... , vm}

• Training samples from other known classes K: K = {k1, ... , kn}

• The larger universe of unknown negative classes U

• Test data: {t1, ... , tz}, ti ∈ P ∪ K ∪ U 

• A measurable recognition function f for a class P

^

^

Recognition Risk:  R(f) = E(sign(f(V)) ≠ L)



Formalization of Open Set 
Recognition Problem

• A few notes on Risk

- Ensure that the risk of a false positive (over 
generalization) is proportional to the volume of space 
which is labeled positive

- Ensure that over specialization occurs if we define the 
region too narrowly around the training data

- Good solutions to the open set recognition problem 
require minimizing the volume of space representing 
the learned recognition function f

‣ Outside the support of positive samples



Formalization of Open Set 
Recognition Problem

• We also need to optimize a data error measure:

D(f(vi); f(kj)); (vi ∈ V, kj ∈ K) 

D could be: inverse F-measure over the training data, inverse 
training precision for a fixed training recall, inverse training 
recall for a fixed training precision...

^^

Goal: balance the risk with the data error measure, all while 
being subject to hard constraints from the positive training data 
and/or negative training data



Formalization of Open Set 
Recognition Problem

The Open Set Recognition Problem

Using training data with positive samples, and other known class 
samples, and a data error measure, find a measurable recognition 
function f, where f(x) > 0 implies positive recognition, and f is defined 
by:

m↵ 
mX

i=1

�(f(vi)) and n� �
nX

j=1

�(f(kj))

argmin {R(f) + λrD(f(vi); f(kj))}

subject to

f

where λr specifies the regularization tradeoff between risk and data, where α ≥ 0 
and β ≥ 0 allow a prescribed limit on true positive and/or false positive rates, and 
Φ is a given loss function.



The trouble with binary classification
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The trouble with 1-vs-All classification
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One Solution: 1-class SVM

• Formulation by Schölkopf et al.1

- Origin defined by the kernel function serves as the 
only member of a “second class”

- Find the best margin with respect to the origin

- The resulting function f takes the values

‣ +1 in a region capturing most of the training data points

‣ -1 elsewhere

1. B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, “Estimating the Support of a High-dimensional 
Distribution,” Microsoft Research, Tech. Rep. MSR-TR-99-87, 1999



One Solution: 1-class SVM

To separate the training data from the origin, the algorithm 
solves the following quadratic programming problem for w and ρ 
to learn f:

min
1
2
kwk2 +

1
⌫m

lX

i=1

⇠i � ⇢

(w · (xi)) � ⇢� ⇠i i = 1, 2, . . . ,m ⇠i � 0

subject to

The kernel function Ψ impacts density estimation and 
smoothness. The regularization parameter ν ∈ (0, 1] controls the 
trade-off between training classification accuracy and and the 
smoothness term || w ||, and also impacts the number of support 
vectors.



1-Class SVM
Generalization

Specialization



Start with a 1-class SVM

+

+

+
+

+

+

Base1-vs-Set Near 
Plane A

+

+

Org

Base1-vs-Set Far Plane Ω

+

+

+

+ +
+

+
+



Generalization
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Specialization
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Where is this work heading?

• The 1-vs-Set Machine as an initial solution for 
open set recognition

• New classes of learning algorithms to 
specifically address the open set problem

• Application Area: Computational Linguistics

‣ The recognition problem occurs here too

Taking literary theory 
into practice!



Open Set Intertextuality

1-Class: Catullus
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Sometimes confusion is a good thing1...

1. C. Forstall, S. Jacobson and W. Scheirer, “Evidence of Intertextuality: Investigating Paul the Deacon’s Angustae Vitae,” 
Literary & Linguistic Computing, 2011 



Questions?


