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What do we do at the coxlab?

Reverse engineering 
biological vision

Biologically inspired 
computer vision



What do we do at the coxlab?

New model systems 
for studying vision

Tools for neuroscience



How can we find images of women 
with blonde hair and rosy cheeks 
who are wearing lipstick? 



What do we get with the most popular image 
retrieval tool?



Visual Attributes

• Ferrari and Zisserman NIPS 20071	


- Describe objects by their attributes	



!

!

!

• Kumar et al. T-PAMI 20112	



- Describe faces by their attributes  

textual description

Has Horn	


Has Leg	


Has Head	


Has Wool

textual description

Has Hat	


Has Beard	


Has African Ethnicity	


Has Round Nose

1. V. Ferrari and A. Zisserman, “Learning Visual Attrivutes,” NIPS 2007	


2. N. Kumar, A. Berg, P. Belhumeur, and S. Nayar, “Describable Visual Attributes for Face Verification and Image Search,” IEEE T-PAMI, 2011

Ghostface Killah        by-nc-nd Enrico Fuente    

Mountain Goat        by-nc-nd Cliff Hall    



Visual Facial Attributes

• Kumar et al. 2011	



- Low-level simple features + machine 
learning	



‣ Feature extractors are composed of 
pixels from face region, pixel feature 
type, normalization and aggregation	



‣ From an aligned image I, extract low 
level features:	



!

‣ In total, we trained 73 different SVM 
attributes classifiers	



‣ Crowdsourced ground truth labeling; 
500-2000 +/- examples from the 
Columbia Face Database

F(I) = {f1(I), . . . , fk(I)}

Image adapted from Fig 1. in N. Kumar et al. “Describable Visual Attributes for Face 
Verification and Image Search,” T-PAMI, 2011 



Attributes vs. Face Recognition for Forensics

• In some cases, we don’t know the identity, but we do have 
a rough description of a face (“be on the lookout for...”)	



• Attributes give us a sketch of features that may play an 
important role in defining an identity	



• Poor quality images might be problematic for face 
recognition, but some attribute classifiers might be robust to 
the conditions1

1. W. Scheirer, N. Kumar, V. Iyer, T. Boult and P. Belhumeur, “How Reliable are Your Visual Attributes?" SPIE Defense and Security Symposium, May 2013, 
Baltimore MD.



Some recent trouble in Boston...

* Eyewitness photograph of bombing scene



Visual Facial Attributes Applied to 
Boston Marathon Bombing Data

Suspect #1

Find regions to 	


compute features	



localize fiducial points
Apply attribute 	



classifiers

Hat: 0.49	


White: 0.15	


Pale Skin: -0.68	


No Beard: 0.83	


Sunglasses: 0.70	



Probabilistic w-scores indicate confidence of result.  A negative score reflects 
the probability of belonging to the opposite side of the decision boundary



Construct a “be on the lookout” description

Suspect #2 Wearing hat

Not wearing sunglasses

Male

No beard



Search for common attributes across images

“Find males wearing hats, without beards or sunglasses”

Male: 0.62	


Hat: 0.77	


No beard: 0.60	


Sunglasses: -0.36

Male: 0.90	


Hat: 0.77	


No beard: 0.69	


Sunglasses: -0.60

Male: 0.77	


Hat: 0.362	


No beard: -0.02	


Sunglasses: -0.46

Male: 0.70	


Hat: 0.81	


No beard: 0.40	


Sunglasses: -0.03



But what’s the problem here?

Search Query:  White Babies Wearing Hats

Results Produced by the approach of Kumar et al. in T-PAMI 2011 

We can use combinations of attributes for search	





Let’s try to build a multi-attribute space1 through the 
calibration of SVM decision scores

Pale Skin

Be
ar

d

Male

“Men with Beard 	


and Pale Skin”

Unnormalized 	


Attribute Scores

Normalized 	


Multi-Attribute Space

Pale Skin
Male

Be
ar

d

1. W. Scheirer, N. Kumar, P. Belhumeur, and T. Boult, “Multi-Attribute Spaces: Calibration for Attribute Fusion and Similarity Search



How does it work?

A multi-attribute space is a product space formed from well 
normalized attribute functions.

The calibration of the decision scores from a binary SVM can be 
accomplished through the use of Meta-Recognition. 	



Our robust normalization converts the decision scores to w-scores, 
which are estimated probabilities of an attribute NOT being drawn from 
the class opposite to it.  	





What is recognition in computer vision?

• Compare an object to a known set of classes, producing a 
similarity measure to each

What is this?
Quiet brown frog        by Olivier Ffrench    

Frog on corn leaf        by Joi Ito

Lovely little girl:)        by BirdCantFly

Red teapot        by fraise

Teapot

Frog

Girl



Data Fusion

• A single algorithm is not a complete 
solution for a recognition task	



• Combine information across algorithms, 
classifiers, or sensors1	



- Decision fusion	



- Score level normalization & fusion

Do this is a robust manner...

1. A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics, Springer, 2006



Meta-Recognition

Recognition System

Post. Recognition
Score Data

Success?
Done

Fa
ilu

re

Prediction

Re-Start

...
etc.Acquire More

Data

+
Perform
Fusion

Request Operator
Interaction

Ignore
Data

(Generic Predictor)
Meta-Recognition System

Monitoring

Control

Goal: Predict if a recognition result is a success or failure

1. W. Scheirer et al., “Meta-Recognition: the Theory and Practice of Recognition Score Analysis,” IEEE T-PAMI, August 2011



From Meta-Cognition to Recognition

• Inspiration: Meta-Cognition Study	



- “knowing about knowing1”	



- Example: If a student has more trouble 
learning history than math, she “knows” 
something about her learning ability and 
can take corrective action 

1. J. Flavell and H. Wellman, “Metamemory,” in Perspectives on the Development of Memory and Cognition, 1988, pp. 3-33



Meta-Recognition Defined

Let X be a recognition system. Y is a meta-recognition 
system when recognition state information flows from 
X to Y, control information flows from Y to X, and Y 
analyzes the recognition performance of X, adjusting 
the control information based on the observations. 



Can’t we do this with say... image quality?

8 47

191 Gallery

Apparent quality is not 
always tied to rank.

• Quality is good as an “overall” predictor	


- Over a large series of data and time	


!

•  Quality does not work as a “per 
instance” predictor	



- One image analyzed at a time...



Challenges for Image Quality Assessment

• Interesting recent studies from the National Institute 
of Standards and Technology	



- Iris1: three different quality assessment algorithms 
lacked correlation	



- Face2: out of focus imagery was shown to produce 
better match scores

“Quality is not in the eye of the beholder; it is in the 
recognition performance figures!”    - Ross Beveridge

1. P. Flynn, “ICE Mining: Quality and Demographic Investigations of ICE 2006 Performance Results,” MBGC Kick-off 
workshop, 2008	


2. R. Beveridge, “Face Recognition Vendor Test 2006 Experiment 4 Covariate Study,” MBGC Kick-off workshop, 2008  



What about cohorts?

• A likely related phenomenon to Meta-Recognition	



• Post-verification score analysis	



• Model a distribution of scores from a pre-defined 
“cohort gallery” and then normalize data1	



- This estimate valid “score neighbors”	



- A claimed object should be followed by its cohorts with a 
high degree of probability	



•  Intuitive, but lacks a theoretical basis

1. S. Tulyakov et al., “Comparison of Combination Methods Utilizing t-normalization and Second Best Score 
Models,” IEEE Workshop on Biometrics, 2008.



Recognition Systems
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Formal definition of recognition

1. G. Shakhnarovich, et al. “Face Recognition from Long-term Observations,” ECCV, 2002.

Find1 the class label c*, where pk is an underlying 
probability rule and p0 is the input distribution satisfying:

c* = argmax Pr(p0 = pc)
class c

subject to Pr(p0 = pc*) ≥ 1- δ, for a given confidence 
threshold δ. We can also conclude a lack of such class. 

Probe: input image p0 submitted to the system with 
corresponding class label c*.

Gallery: all the classes c* known by the recognition 
system.



Rank-1 Prediction as a Hypothesis Test

• Formalization of Meta-Recognition	



• Determine if the top K scores contain an outlier with 
respect to the current probe’s match distribution	



• Let F(p) be the non-match distribution, and m(p) be the 
match score for that probe.	



• Let S(K) = s1 ... sk be the top K sorted scores

H0 (failure) : ∀x ∈ S(K), x ∈ F(p)  
If we can reject H0, then we predict success.

Hypothesis Test:



The Key Insight

We don’t have enough data to model the match distribution, but 
we have n samples of the non-match distribution - good enough 
for non-match modeling and outlier detection.

If the best score is a match, then it should be an outlier with respect to 
the non-match model.



A Portfolio Model of Recognition

Overall Distribution of Scores

Portfolios

Best of Portfolio Matches

Tail Analysis

Extreme Value Theory

Distribution’s tail

Match

Portfolios of Gallery Scores

Extrema

Scores

Fr
eq

ue
nc

y



The Extreme Value Theorem

lim
x!1
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Let (s1, s2, ... , sn) be a sequence of i.i.d. samples. Let Mn = 
max{s1, ... , sn}. If a sequence of pairs of real numbers (an, 
bn) exists such that each an > 0 and 

then if F is a non-degenerate distribution function, it belongs 
to one of three extreme value distributions1.

The i.i.d. constraint can be relaxed to a weaker assumption 
of exchangeable random variables2.

1. S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications, 1st ed. World Scientific Publishing 
Co., 2001.

2. S. Berman, “Limiting Distribution of the Maximum Term in Sequences of Dependent Random Variables,” Ann. Math. 
Stat., vol. 33, no. 3, pp. 894-908, 1962. 



The Weibull Distribution

The sampling of the top-n scores always results in an EVT 
distribution, and is Weibull if the data are bounded1.

f(x;�, k) =

(
k

�

(x

�

)k�1
e

�(x/�)k

x � 0
0 x < 0

Choice of this distribution is not dependent on the model 
that best fits the entire non-match distribution.

1. NIST/SEMATECH e-Handbook of Statistical Methods, ser. 33. U.S. GPO, 2008



Rank-1Statistical Meta-Recognition

Require: a collection of similarity scores S 	



1. Sort and retain the n largest scores, s1, ... , sn ∈ S; 

2. Fit a Weibull distribution WS to s2, ... , sn, skipping the 
hypothesized outlier;	



3. if Inv(δ; WS) < s1 do	



4.      s1 is an outlier and we reject the failure prediction 
(null) hypothesis H0	



6. end if   

δ is the hypothesis test “significance” level threshold	


Good performance is often achieved using δ = 1 - 10-8



Can’t we just look at the mean or shape of 
the distribution?
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Per-instance success and failure distributions are 
not distinguishable by shape or position

The outlier test is 
necessary



Meta-Recognition Error Trade-off Curves

Conventional	


Explanation Prediction

Ground 
Truth

Case 1 False Accept Success O

Case 2 False Reject Failure O

Case 3	

 True Accept Success P

Case 4 True Reject Failure P

Meta-Recognition 
False Alarm Rate

Meta-Recognition 
Miss Detection Rate

MRFAR = 
| Case 1 |

| Case 1 | + | Case 4 |

MRMDR = 
| Case 2 |

| Case 2 | + | Case 3 |



Comparison with Basic Thresholding 
over Original and T-norm Scores
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And meta-recognition works across all 
algorithms tested...
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We can do score level fusion too...

Recognition Alg. 1

Post. Recognition
Score Data

EVT Fitting for Alg. 1

w-score?
Prediction

Recognition Alg. 2
Post. Recognition

Score Data
w-score?

Prediction+

Perform
Fusion

Fused w-score

Use the CDF of the Weibull model for score normalization:

We call this a w-score1

CDF(x) = 1 - e-(x/λ) k

1. W. Scheirer et al., “Robust Fusion: Extreme Value Theory for Recognition Score Normalization” ECCV 2010



w-score normalization

Require: a collection of scores S, of vector length m, from 
a single recognition algorithm j; 	



1. Sort and retain the n largest scores, s1, ... , sn ∈ S; 

2. Fit a Weibull distribution WS to s2, ... , sn, skipping the 
hypothesized outlier;	



3. While k < m do	



4.      s′k = CDF(sk, WS)	



5.      k = k + 1 

6. end while   



Error Reduction: Failing vs. Succeeding 
Algorithm
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Multi-Attribute Spaces1

• Let P(L(j)|I), j = 1...N, be the probability 
that humans would assign label L(j) to a 
given image I	



• Let Aj(I) be attribute classifiers that map 
images to real-valued scores 	



• Let E(Aj) ≡ |Aj(I) - P(L(j)|I)| be the 
expected labeling error in Aj

1. W. Scheirer et al., “Multi-Attribute Spaces: Calibration for Attribute Fusion and Similarity Search” CVPR 2012



Multi-Attribute Spaces

• Definition 1.  A continuous function Aj : I ↦ 
[0,1] is called a well normalized attribute 
function when E(Aj(I)) ≤ ε with a probability 
of at least 1 - δ	



• Definition 2.  A multi-attribute space M : I ↦ 
[0,1]N is a product space formed from well 
normalized attribute functions, M(I) = A1(I) 
× A2(I) × ... × AN(I)
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Fusion for Multi-Attribute Search

Solve the following problem: 

!

maximize over I                                 sq = || Aj(I) ||1	



subject to                            Aj(I) = CDF(sj(I); Wj);	



for ∀ j ∈ J satisfying              0 ≤ αj ≤ Aj(I) ≤ βj ≤ 1; 

Goal: find the images that maximize the L1 norm of 
estimated probabilities for each attribute that also 
satisfy the constraints αj and βj       



Multi-Attribute Search

Indian

Our Approach
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Comparison with the approach presented by 
Kumar et al. in T-PAMI 2011

Kumar et al. 2011 Our Multi-Attribute Space Approach

Query:  Women with Pale Skin

Query:  Chubby Indian Men with Mustache

Query:  White Babies Wearing Hats



Comparison with the approach presented by 
Kumar et al. in T-PAMI 2011

Kumar et al. 2011 Our Multi-Attribute Space Approach

Query:  Women with Curly Hair

Query:  Men with Black Hair and Goatee

Query:  Indian Kids with Round Face



Comparison with the approach presented by 
Kumar et al. in T-PAMI 2011
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For 900 comparison tests, our approach was 
selected as “more relevant” 86.9% of the time  



Similar Attribute Search

For finer grained search, we are interested in candidates outside 
of just the top results with the highest scores

Male
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A new way to search: similarity search based on target 
attributes from a particular image

Target



Target Attribute Details



Additional target attributes from the chosen image 
can be added to Refine the Query:



Similar Attribute Search Results
Query: Men with a Pointy Nose and Black Hair like the targets in the selected image 

Target



Similar Attribute Search Results

Query: Beard, Pointy Nose and Pale Skin like the targets in the selected image 

Target

Target

Query: Blonde hair like the target in the selected image 

Query: Black Hair and Bangs like the targets in the selected image 

Target



Query: Nose Most like Jackie Chan’s Query: Smile Most like Angelina Jolie’s

Queries can be mapped to specific names:



Two Approaches to Results Ordering

Ordering Based on Distance 
Measured from Query Attributes

Query: Rosy Cheeks 	


& Blonde Hair Most 

Like this image

Target

Ordering Based on Distance Measured from 
Query Attributes + Other Contextual Attributes



Ordering Based on Distance From Target Attributes 
for Query Attributes

2.

Query: Blonde Hair and Rosy Cheeks like Selected Image

3. 4. 5. 6. 7. 8. 9. 10. 11.

12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

Target 1.

23.

24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35.

36. 37. 38. 39. 40.

Statistically significantly better than an ordering not consistent with 
human ordering, with a p value < 0.01



Ordering Based on Distance Measured from Query 
Attributes + Other Contextual Attributes 

Target

Statistically significantly better than an ordering not consistent with human 
ordering 
!Statistically significantly better than an ordering based just on query attributes  

Query: Blonde Hair and Rosy Cheeks like Selected Image



Query: Chubby Face and Round Face like selected Image

Statistically significantly consistent with human ordering

Target 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35.

36. 37. 38. 39. 40.

Ordering Based on Distance From Target Attributes 
for Query Attributes



Target

Statistically significantly better than an ordering not consistent with human 
ordering 
!Statistically NOT significantly better than an ordering based just on query 
attributes 

Ordering Based on Distance Measured from Query 
Attributes + Other Contextual Attributes 

Query: Chubby Face and Round Face like selected Image



How reliable are attributes for real-world 
applications?
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Attribute Reliability Studies

1. W. Scheirer et al., “How Reliable are Your Visual Attributes?” SPIE Biometric and Surveillance Technology for 
Human and Activity Identification X, May 2013.

Four Steps for a Study:

1.

Apply Image 	


Transforms

Attribute	


Classifier Aα

Decision 	


Scores 

Generate	


w-scores
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Analyze Results

• For each attribute α, transformation i, and 
parameter set jp, assume a w-score set Wα,i,jp	



• Compute an average of each w-score set: µα,i,jp  	



• Compute difference between the average for 
the original images I and the averages across 
transformation intervals: Δα,i,jp = µα,I - µα,i,jp



Reliability Representation
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Forehead and Brow Attributes

!1.5%

!1%

!0.5%

0%

0.5%

1%

1.5%
0.
70
7!

1.
0!

1.
41
!

2.
0!

2.
82
8!

4.
0!

5.
66
!

8.
0!

11
.3
1!

Gaussian'Blur'

Visible%Forehead% Obscured%Forehead% Blocked%Forehead%
Eyebrow%Shape% Eyebrow%Thickness%

Gaussian'blur'level'(σ)

Av
er
ag
e'
di
ffe

re
nc
e'
of
'w
8s
co
re
s

Dataset: LFW



Forehead and Brow Attributes

!1.5%

!1%

!0.5%

0%

0.5%

1%

1.5%
83
%
%

69
%
%

57
%
%

47
%
%

39
%
%

33
%
%

27
%
%

23
%
%

19
%
%

16
%
%

Scale&

Visible%Forehead% Obscured%Forehead% Blocked%Forehead%
Eyebrow%Shape% Eyebrow%Thickness%

Scale&(%&of&original&image)&

Av
er
ag
e&
di
ffe

re
nc
e&
of
&w
6s
co
re
s

Dataset: LFW



Forehead and Brow Attributes
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Identify Useful Parameters for Mobile 
Applications

Face detectionsFile sizes
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Ex. JPEG quality of 15 uses less than 20% of the original space, and yet 
is still reliable for most attributes



Try this out

• The search engine: http://mughunt.securics.com	



• The Meta-Recognition library: http://www.metarecognition.com/ 
(Coming soon to GitHub!)
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