CSE 40171: Artificial Intelligence

Uninformed Search: Search Spaces
Homework #1 has been released. It is due at 11:59PM on 9/10.
Course Roadmap

Introduction (week 1)

Problem Solving (weeks 3 - 6)

Machine Learning (weeks 11 - 16)

Biological Intelligence (week 2)

Probabilistic Reasoning (weeks 7 - 10)
Agents

Definition: anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.
Goal-Based Agents

Consider future actions and the desirability of their outcomes
Search Problems
Touring Romania

Image Credit: Russel and Norvig
Problem Solving Agents

Formulate: decide what states and actions to consider, given a goal

Search: look for a sequence of actions that reaches the goal

Execute: carry out the recommended actions

I need to get to Bucharest by tomorrow!
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state ← UPDATE-STATE(state, percept)
if seq is empty then
 goal ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, goal)
 seq ← SEARCH(problem)
 if seq = failure then return a null action

action ← FIRST(seq)
seq ← REST(seq)
return action
What does a search problem consist of?

A state space

A successor function (with actions, costs)

An initial state and goal test

A **solution** is a sequence of actions (a plan) that transforms the initial state to a goal state.
Initial State: $In(\ Arad\)$

Valid Actions: \{Go(\ Sibiu\), \ Go(\ Timisoara\), \ Go(\ Zerind\)\}

Successor from initial state: RESULT($In(\ Arad\), \ Go(\ Zerind\)) = In(\ Zerind\)$

Goal Test: \{In(\ Bucharest\)\}

Path Cost: 140 (Sibiu) + 99 Fagaras + 211 Bucharest
Solution Quality

Which path is the shortest?

Optimal Solution:

\[
\text{Arad} \rightarrow \text{Sibiu, Sibiu} \rightarrow \text{Rimnicu Vilcea, Rimnicu Vilcea} \rightarrow \text{Pitesti, Pitesti} \rightarrow \text{Bucharest}
\]

\[
140 + 80 + 97 + 101
\]
Toy example: the 8-puzzle
Formulation of the 8-puzzle

States: A state description specifies the location of each of the eight tiles and the blank in one of the nine squares.

Initial state: Any state can be designated as the initial state.

Actions: movements of the blank space *Up, Down, Left, or Right*. Different subsets of these are possible depending on where the blank is.
Formulation of the 8-puzzle

Transition model: Given a state and action, this returns the resulting state.

Goal test: This checks whether the state matches the goal configuration.

Path cost: Each step costs 1, so the path cost is the number of steps in the path.
Computational complexity of sliding-block puzzles

The 8-puzzle is a finite problem, but it can be generalized to $n \times n$ matrices.

Testing whether a solution exists is in P.

Finding the solution with the fewest moves is NP-complete.

- Reduces to the 2/2/4-SAT problem.

Knuth’s factorial, square root and floor sequence problem

States: Positive numbers.

Initial state: 4

Actions: Apply factorial, square root, or floor operation

Transition Model: As given by the mathematical definitions of the operations

Goal Test: State is the desired positive integer
Real-world Problems
Route-Finding Problem
Route-Finding Problem

States: Includes a location and the current time. The state must also record extra information about a flight segment including previous segments, the fare base, and the status as domestic or international.

Initial State: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class, leaving after the current time, leaving enough time for connecting if needed.
Route-Finding Problem

Transition model: The state resulting from taking a flight will have the flight’s destination as the current location and the flight’s arrival time as the current time.

Goal test: Are we at the final destination specified by the user?

Path cost: This depends on the monetary cost, waiting time, flight time, frequent-flyer milage awards, and so on.
Touring Problems

“Visit every city at least once, starting and ending in Bucharest”
Traveling Salesperson Problem

Another touring problem:

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?

NP-hard
Google Maps and the Traveling Salesperson Problem

- Software Library: OR-Tools (https://github.com/google/or-tools/)
- Local search to improve solutions; first solutions being generated using a cheapest addition heuristic
- Optionally forbid a set of random connections between vertices
Robot Navigation

https://vimeo.com/271932549
Robot Navigation

https://www.youtube.com/watch?v=aaOB-ErYq6Y