CSE 40171: Artificial Intelligence

Course Introduction / Introduction to AI

Course Info:

- CSE 40171: Artificial Intelligence
- Instructor: Walter Scheirer (wscheire@nd.edu; @wjscheirer)
- Office: 321C Stinson-Remick
- Lectures: MWF 3:30-4:20pm DeBartolo Hall 125
- Office Hours: Mon. & Weds. 1-3:15pm and by appointment.

Course Website: https://www.wjscheirer.com/teaching/ai/ai-fall-2019/

Course Slack Channel

#cse-40171-fa19 nd-cse.slack.com

Grad TA:

- Sophia Abraham
- sabraha2@nd.edu
- Office Hours: Fri. 9-11am
 - Center for Digital Scholarship (Hesburgh Library)

Undergrad TAs:

Mike Eisemann (meiseman@nd.edu)

Fiona McCarter (fmccarte@nd.edu)

About me

- Joined Notre Dame Summer 2015
 - Ph.D. from the University of Colorado 2009
 - 2007 2012 Security Startup Securics, Inc.
 - 2012 2015 Harvard University Center for Brain Science
- Research in Computer Vision and Machine Learning

Reverse engineering biological vision

Tools for Neuroscience

Statistical methods for visual recognition

Digital Humanities

How about you?

- Introduce yourself.
- Any experience with Neural Networks, Psychology, Neuroscience, or Statistics?
- What interests you about artificial intelligence?

Course Overview

- 33 lectures
- 1 documentary film screening (*AlphaGo*)
- 2 Invited Talks
- 8 homework assignments
- 2 quizzes (in-class)
- 1 group project
 - Project proposal
 - Project update
 - Final deliverable in lieu of final exam

Course Overview

*Full syllabus on course website

Grading

Component	Points
Participation Participation in class, film response, office hours, and slack chats.	100
Homeworks Homework assignments.	8 × 100
Project Final group project.	700
Quizzes In-class quizzes.	2 × 200
Total	2000

Important Dates

Homework #1 (Artificial Neural Networks)	Released: 9/9; Due: 9/16
Film Response	Released: 9/18; Due: 9/23
Homework #2 (Search Strategies)	Released: 9/23; Due: 9/30
Homework #3 (Search Strategies)	Released: 10/2; Due: 10/9
Homework #4 (Neural Network Search)	Released: 10/11; Due: 10/18
Quiz 1	10/30
Homework #5 (Segmentation for Connectomics)	Released: 11/6; Due: 11/13
Homework #6 (Neural Nets. with Anatomical Fidelity)	Released: 11/15; Due: 11/22
Homework #7 (Neural Nets. with Biological Dynamics)	Released: 11/25; Due 2/2
Homework #8 (Bayesian Read-outs)	Released 12/4; Due: 12/11
Quiz 2	12/11

Course Overview

*Full syllabus on course website

The group (3-4 students) project will consist of several milestones, including a project proposal, interim project update, and a final deliverable including a full report and complete code and data.

Important Dates

Project Proposal	Instructions Released: 10/28; Due: 11/4
Project Update	Instructions Released: 11/18; Due: 11/25
Final Deliverable	Released: 12/1; Due: 12/18

Prerequisites

Required prerequisite course: N/A

You need to be comfortable programming in Python

Textbook

Other readings will be posted to the course website; keep an eye on the class schedule

Course Objectives

- **Understand** the philosophical underpinnings of the field and motivations for pursuing the replication of certain competencies of the brain.
- **Relate** real-life problems to perceptual and cognitive models that are able to solve aspects of them in an efficient manner.
- **Deploy** general search algorithms that can be applied to a wide variety of tasks.
- **Formulate** decision making processes that can be used for planning and classification purposes.

Course Objectives

- **Build** intelligent agents that perform simple tasks in an autonomous fashion.
- Learn task-specific models from large collections of labeled training data samples using algorithms that are optimized using numeric solvers.
- **Utilize** the Pytorch framework for building solutions to problems related to games, computer vision, natural language processing, and other general data science applications.
- **Identify** problems that are solvable with today's AI algorithms and others that require novel solutions.

Course Objectives

• **Grasp** the aspects of artificial intelligence where neuroscience and computer science come together to form the basis of a new class of learning algorithms.

Machine Learning Algorithms from Wet Lab Experimentation

Experimental workflow

Course Roadmap

A brief history of Al

Once a historical footnote...

Thinking Machines CM-5 "FROSTBURG" at the National Cryptologic Museum. 😁 BY-SA 2.5 Mark Pellegrini

Spacewar running on PDP-1 🞯 BY 2.0 Joi Ito

Tamindpixel Digital Mind Modeling Project

Lettvin Pitts 😇 BY-SA 3.0 Iapx86

... now big business

Testing the Tesla autopilot (self-driving mode) BY 2.0 Marc van der Chijs

AlphaGo 😇 BY 2.0 Prachatai

• • •

bicycle

predictions.jpg

ð 🖨

Google Translate for Business: Translator Toolkit Website Translator Global Market Finder

https://pjreddie.com/darknet/yolo/

The early years

The 1950s...

Dartmouth Summer Program in Artificial Intelligence, June-August 1956

Photo Source: Achievement.org

The mid 50s to mid 70s: The (so-called) golden years

Reasoning as search

A example of greedy algorithm, searching the largest path in a tree. Swfung8

The Blocks World

Photo Source: MIT Technology Review

SHRDLU

https://www.youtube.com/watch?v=bo4RvYJYOzl

ELIZA

File Edit Options Buffers Tools Help 🜔 🖗 🗙 💧 🗭 🦘 🛠 敗 🕷 🚱 🧭 ? I am the psychotherapist. Please, describe your problems. 2 SEach time you are finished talking, type RET twice. I have a terrible headache. Maybe you should consult a doctor of medicine, I am a psychi? Satrist. Okay, I'll do that then. Can you elaborate on that? What are you talking about? No I cannot elaborate. See you l? Sater. Why do you say that? Now you're just talking nonsense! What makes you believe now I am just talking nonsense? You are not making any sense. Perhaps your plans have something to do with this. -u:** *doctor* (Doctor Fill)--L1--Top------

Image Credit: Wikipedia User Ysangkok

Brash Optimism

"within ten years a digital computer will be the world's chess champion" and "within ten years a digital computer will discover and prove an important new mathematical theorem."

- H.A. Simon and Allen Newell

"machines will be capable, within twenty years, of doing any work a man can do."

- H.A. Simon

"Within a generation... the problem of creating 'artificial intelligence' will substantially be solved."

- Marvin Minsky

"In from three to eight years we will have a machine with the general intelligence of an average human being."

- Marvin Minsky