CSE 40171: Artificial Intelligence

The Brain: Perception

1

Course Roadmap

Perception: the organization, identification, and interpretation of sensory information in order to represent and understand the presented information, or the environment.

The Visual System

The Auditory System

Anatomy of the human ear CBY 2.5 Chittka L, Brockmann

The Somatosensory System

Activation and response in the sensory nervous system 🕲 BY 4.0 OpenStax

The Olfactory System

The Gustatory System

0102 Brain Motor&Sensory (flipped) 😇 BY 3.0 BruceBlaus

How fast is the brain processing sensory information?

Visual Object Recognition

- With Behavior:
 - ~250 ms in monkeys (Fabre-Thorpe et al. Neuroreport 1998)
 - ~350 ms in humans (Rousselet et al. Nature Neuroscience 2002)
- Direct Neural Surface Recording:
 - ► ~150 ms (Thorpe et al. Nature1996)

Latency of Auditory Cortex in Monkeys

Odor discrimination

- Behavioral studies in vertebrates
 - ► ~500 ms or less (Junek et al. Neuron 2010)

Is learning involved?

What happens when an animal is raised in the dark?

Visual Object Recognition

Red Delicious @BY-SA 2.0 tanya4keba

Orange Whole Split 😇 BY-SA 3.0 Evan-Amos

Categorical vs. Perceptual Learning

Category Learning: the process of learning internal rules and decision functions that map incoming stimuli onto category labels

- Likely occurring too rapidly to entail any significant remodeling of underlying perceptual representations
- Underlying perceptual machinery already possesses adequate signal-to-noise ratios to represent stimulus distinctions

Categorical vs. Perceptual Learning

Perceptual Learning: the setting where underlying perceptual representations are not *a priori* adequate to solve the task at hand.

 Characterized by longer training times, sometimes with intervening sleep being required to achieve learning at high levels

Categorical vs. Perceptual Learning: Experiments

range for "categorical/cognitive" regime

How do we measure perceptual thresholds?

Visual Psychophysics

Probe psychological and perceptual thresholds through controlled manipulation of stimuli.

Careful management of stimulus construction, ordering and presentation allows for precise determination of perceptual thresholds.

Canonical Early Example^{*}: minimum threshold for stimulation of an individual photoreceptor.

Slide Credit: S. Anthony

Bruce & Young 1986

Behavioral Task

3 Alternative Forced Choice

Scheirer et al. T-PAMI 2014

* normalized so chance is zero

Optical Illusions

An optical illusion similar to Rotating Snakes BY-SA 3.0 Cmglee

Surround Suppression

Surround Suppression Example Figure @ BY-SA 3.0 Michaelhyphenpaul

Flashlag Effect

http://visionlab.harvard.edu/Members/Alumni/David/flash-lag.htm

Perception & AI: Marr

Levels of Analysis

- 1. Computational Level: what does the system do?
- 2. Algorithmic / Representational Level: how does the system do what it does?
- 3. Implementation / Physical Level: how is the system physically realized?

Stages of Vision

Image credit: S. Lehar (http://www.doc.gold.ac.uk/~mas02fl/MSC101/Vision/Marr.html)

Marr, Vision, MIT Press 1982

Computer Vision: Perception

Trustworthiness

McCurie et al., IEEE FG, 2017