CSE 40171: Artificial Intelligence

Artificial Neural Networks: Structure of Neural Networks

Homework #1 has been released It is due at 11:59PM on 9/16

Course Roadmap

Numerical Approximation

$$f(x) = 6x^5 - 5x^4 - 4x^3 + 3x^2$$

Components of Learning

Input: $\mathbf{x} \in \mathbb{R}^d = \mathcal{X}$

Output: $y \in -1, +1 = \mathcal{Y}$

Target Function: $f: \mathcal{X} \mapsto \mathcal{Y}$

Data set: $\mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$

(the target f is unknown)

 $(y_n = f(\mathbf{x}_n) \text{ is } unknown)$

 $\mathcal{X} \mathcal{Y}$ and \mathcal{D} are given by the learning problem;

The target f is fixed but unknown

We learn the function f from the data \mathcal{D}

Components of Learning

Start with a set of candidate hypotheses \mathcal{H} that you think are likely to represent f.

$$\mathcal{H} = \{h_1, h_2, \dots, \}$$

is called the hypothesis set or model.

Select a hypothesis g from \mathcal{H} . The way we do this is called a **learning** algorithm.

We hope $g \approx f$

We choose ${\cal H}$ and the learning algorithm

Basic Artificial Neural Networks

Artificial Neural Networks

Artificial "neurons" are connected together to form a network

- Contains sets of adaptive weights
 - These are learned during training
- Capable of approximating non-linear functions of their input

Neural Network Structures

Neural networks are composed of:

Units (vertices in a graph)

Links (connecting unit *i* to unit *j*)

Activations (propagating signals from i to j)

Weights (determining the strength and sign of the connection)

Units

Slide credit: Russell and Norvig

Units

Each unit *j* first computes a weighted sum of its inputs:

$$in_j = \sum_{i=0}^n w_{i,j} a_i$$

Activation Functions

A unit then applies an **activation function** g to the sum to derive the output:

$$a_j = g(in_j) = g\left(\sum_{i=0}^n w_{i,j}a_i\right)$$

Activation Function: Hard Threshold

Unit: Perceptron

Activation Function: Logistic Function

Unit: Sigmoid Perceptron

Activation Function: tanh

A plot of the tanh activation function. © BY-SA 4.0 Laughsinthestocks

Popular in the early days of neural networks

Activation Function: Rectified Linear (ReLU)

This is the activation function you should use by default

Feed-Forward Networks

A Neural network with two layers @ BY-SA 3.0 Chrislb

Recurrent Networks

Recurrent Layer Neural Network © BY-SA 3.0 Chrislb

Layers

One Layer

Multiple Layers

Hidden Units

What role do these units play?

Single-Layer Feed Forward Networks (Perceptrons)

Consider this network:

 $\begin{array}{c|c}
 & w_{1,3} \\
\hline
 & w_{1,4} \\
\hline
 & w_{2,3} \\
\hline
 & 4
\end{array}$

And this training data:

x_1	x_2	y3 (carry)	<i>y</i> ₄ (sum)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Objective: Learn a two-bit adder function

Network structure

A perceptron network with *m* outputs is really *m* separate networks

- Each weight affects only one of the outputs
- ► *m* separate training processes

Some trouble with the math...

Why does this happen?

Linear Separability in Threshold Perceptrons

Multilayer Feed-Forward Neural Networks

Problem: The brain can solve XOR

McCulloch and Pitts argued that any desired functionality might be achieved by connecting large numbers of units

How does the training work?

Solution: add hidden units

As a function $h_{\mathbf{w}}(\mathbf{x})$ parameterized by weights w

Output expressed as a function of the inputs and the weights

Given an input vector $\mathbf{x} = (x_1, x_2)$, the activations of the inputs are set to $(a_1, a_2) = (x_1, x_2)$

The output at unit 5 is given by:

$$a_5 = g(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)$$

$$= g(w_{0,5} + w_{3,5}g(w_{0,3} + w_{1,3}a_1 + w_{2,3}a_2) + w_{4,5}g(w_{0,4} + w_{1,4}a_1 + w_{2,4}a_2))$$

$$= g(w_{0,5} + w_{3,5}g(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) + w_{4,5}g(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2))$$

Result of combining two opposite-facing soft threshold functions to produce a ridge

Result of combining two ridges to produce a bump

Utility of hidden layers

- With a single, sufficiently large hidden layer, it is possible to represent any continuous function of the inputs with arbitrary accuracy
- Two layers: even discontinuous functions can be represented
- Problem: for any particular network, it is harder to characterize which functions can be represented and which cannot

PyTorch Example

Let's predict grades achieved on a test (y) based on hours spent studying and sleeping (X) using the following network:

Consider the brain: what is missing from this model?