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Film Response Activity 
Due Tonight
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Homework #2 has been released 
It is due at 11:59PM on 9/30



Search Trees
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Search Trees

“E”, 1.0“N”, 1.0

Present state

Possible futures

• A “what if” tree of plans and their outcomes 

• The start state is the root vertex 

• Children correspond to successors 

• Vertices show states, but correspond to plans that achieve them 

• For most problems, we can never actually build the whole tree
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



From Graphs to Trees
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Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Consider this 4-state graph: How large is its search tree? 
(starting from S)



From Graphs to Trees

Image Credit: Russel and Norvig



Partial search tree for finding a 
route between two cities

Image Credit: Russel and Norvig
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Generated

Not Generated

Frontier: vertices with bold outlines



function TREE-SEARCH( problem ) returns a solution, or failure 
    initialize the frontier using the initial state of problem 
    loop do 
         if the frontier is empty then return failure 
         choose a leaf vertex and remove it from the frontier 
         if the vertex contains a goal state then return the corresponding solution 
         expand the chosen vertex, adding the resulting vertices to the frontier



What is the problem with TREE-SEARCH? 



function GRAPH-SEARCH( problem ) returns a solution, or failure 
    initialize the frontier using the initial state of problem 
    initialize the explored set to be empty 
    loop do 
         if the frontier is empty then return failure 
         choose a leaf vertex and remote it from the frontier 
         if the vertex contains a goal state then return the corresponding solution 
         add the vertex to the explored set 
         expand the chosen vertex, adding the resulting vertices to the frontier 
            only if not in the frontier or explored set



Each vertex has a structure that 
contains four components

n.STATE: the state in the state space to which the vertex 
corresponds 

n.PARENT: the vertex in the search tree that generated 
this vertex

n.ACTION: the action that was applied to the parent to 
generate the vertex

n.PATH-COST: the cost of the path from the initial state to 
the vertex



Keeping track of vertices

The right data structure for this is a queue

EMPTY?(queue): returns true only if there are no more 
elements in the queue

POP(queue): removes the first element of the queue and 
returns it

INSERT(element, queue): inserts an element and returns the 
resulting queue



Algorithm Performance Evaluation

Completeness: Is the algorithm guaranteed to find a 
solution when there is one?

Optimality: Does the strategy find the optimal solution 
(lowest path cost)?

Time complexity: How long does it take to find a 
solution?

Space complexity: How much memory is needed to 
perform the search?



Breadth-first search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



function BREADTH-FIRST-SEARCH( problem ) returns a solution, or failure 

    vertex ← a vertex with STATE = problem.INITIAL-STATE, PATH-COST = 0 
    if problem.GOAL-TEST( vertex.STATE ) then return SOLUTION( vertex ) 
    frontier ← a FIFO queue with vertex as the only event 
    explored ← an empty set 
    loop do 
        if EMPTY?( frontier ) then return failure 
        vertex ← POP( frontier )  // chooses the shallowest vertex in frontier 
        add vertex.STATE to explored 
        for each action in problem.ACTIONS( vertex.STATE ) do 
            child ←  CHILD-VERTEX( problem, vertex, action ) 
            if child.STATE is not in explored or frontier then 
                if problem.GOAL-TEST( child.STATE ) then return SOLUTION( child ) 
                frontier ← INSERT( child, frontier ) 



Breadth-first Search Performance

Completeness: if the shallowest goal vertex is at some 
finite depth d, it will be found 

Optimality: optimal if the path cost is a non-decreasing 
function of the depth of the node 
‣  Most common such scenario: all actions have the 

same cost

The good:



Breadth-first Search Performance

Time complexity: Worst case when the solution is at depth 
d, in the last vertex generated at that level  
‣   b + b2 + b3 + … bd = O(bd)

The bad:

Assume a uniform tree where every state has b successors 

Space complexity: always within a factor of b of the time 
complexity



Depth-first Search



What happens if we have infinite 
state spaces?



function DEPTH-LIMITED-SEARCH( problem, limit ) returns a solution, or failure/cutoff   
    return RECURSIVE-DLS( MAKE-NODE( problem.INITIAL-STATE ), problem, limit) 

function RECURSIVE-DLS( vertex, problem, limit ) returns a solution, or failure/cutoff 
    if problem.GOAL-TEST( vertex.STATE) then return SOLUTION( vertex ) 
    else if limit = 0 then return cutoff 
    else  
        cutoff_occurred? ← false 
        for each action in problem.ACTIONS( vertex.STATE ) do 
            child ← CHILD-NODE( problem, vertex, action ) 
            result ← RECURSIVE-DLS( child, problem, limit - 1 ) 
            if results = cutoff then cutoff_occured? ← true 
            else if result ≠ failure then return result 
        if cutoff_occurred? then return cutoff else return failure



Depth-limited search performance

Completeness: incomplete if we choose l < d

Optimality: non-optimal if l > d

Choose a depth limit l

Assume a uniform tree where every state has b successors 

Time complexity: O(bl)

Space complexity: O(bl)



When will breadth-first search outperform 
depth-first search?

When will depth-first search outperform 
breadth-first search?



Search and Models

• Search operates over models 
of the world 
‣ The agent doesn’t try all of the 

plans in the real world 

‣ Planning is all in simulation 

‣ Therefore, your search is only 
as good as your models

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 


