
Uninformed Search: Search Trees

CSE 40171:
Artificial Intelligence

�25

�26

Film Response Activity
Due Tonight

�27

Homework #2 has been released
It is due at 11:59PM on 9/30

Search Trees

Vertex

Edge

Search Trees

“E”, 1.0“N”, 1.0

Present state

Possible futures

• A “what if” tree of plans and their outcomes

• The start state is the root vertex

• Children correspond to successors

• Vertices show states, but correspond to plans that achieve them

• For most problems, we can never actually build the whole tree
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

From Graphs to Trees

S G

b

a

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Consider this 4-state graph: How large is its search tree?
(starting from S)

From Graphs to Trees

Image Credit: Russel and Norvig

Partial search tree for finding a
route between two cities

Image Credit: Russel and Norvig

Expanded

Generated

Not Generated

Frontier: vertices with bold outlines

function TREE-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 loop do
 if the frontier is empty then return failure
 choose a leaf vertex and remove it from the frontier
 if the vertex contains a goal state then return the corresponding solution
 expand the chosen vertex, adding the resulting vertices to the frontier

What is the problem with TREE-SEARCH?

function GRAPH-SEARCH(problem) returns a solution, or failure
 initialize the frontier using the initial state of problem
 initialize the explored set to be empty
 loop do
 if the frontier is empty then return failure
 choose a leaf vertex and remote it from the frontier
 if the vertex contains a goal state then return the corresponding solution
 add the vertex to the explored set
 expand the chosen vertex, adding the resulting vertices to the frontier
 only if not in the frontier or explored set

Each vertex has a structure that
contains four components

n.STATE: the state in the state space to which the vertex
corresponds

n.PARENT: the vertex in the search tree that generated
this vertex

n.ACTION: the action that was applied to the parent to
generate the vertex

n.PATH-COST: the cost of the path from the initial state to
the vertex

Keeping track of vertices

The right data structure for this is a queue

EMPTY?(queue): returns true only if there are no more
elements in the queue

POP(queue): removes the first element of the queue and
returns it

INSERT(element, queue): inserts an element and returns the
resulting queue

Algorithm Performance Evaluation

Completeness: Is the algorithm guaranteed to find a
solution when there is one?

Optimality: Does the strategy find the optimal solution
(lowest path cost)?

Time complexity: How long does it take to find a
solution?

Space complexity: How much memory is needed to
perform the search?

Breadth-first search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

 vertex ← a vertex with STATE = problem.INITIAL-STATE, PATH-COST = 0
 if problem.GOAL-TEST(vertex.STATE) then return SOLUTION(vertex)
 frontier ← a FIFO queue with vertex as the only event
 explored ← an empty set
 loop do
 if EMPTY?(frontier) then return failure
 vertex ← POP(frontier) // chooses the shallowest vertex in frontier
 add vertex.STATE to explored
 for each action in problem.ACTIONS(vertex.STATE) do
 child ← CHILD-VERTEX(problem, vertex, action)
 if child.STATE is not in explored or frontier then
 if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
 frontier ← INSERT(child, frontier)

Breadth-first Search Performance

Completeness: if the shallowest goal vertex is at some
finite depth d, it will be found

Optimality: optimal if the path cost is a non-decreasing
function of the depth of the node
‣ Most common such scenario: all actions have the

same cost

The good:

Breadth-first Search Performance

Time complexity: Worst case when the solution is at depth
d, in the last vertex generated at that level
‣ b + b2 + b3 + … bd = O(bd)

The bad:

Assume a uniform tree where every state has b successors

Space complexity: always within a factor of b of the time
complexity

Depth-first Search

What happens if we have infinite
state spaces?

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff
 return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(vertex, problem, limit) returns a solution, or failure/cutoff
 if problem.GOAL-TEST(vertex.STATE) then return SOLUTION(vertex)
 else if limit = 0 then return cutoff
 else
 cutoff_occurred? ← false
 for each action in problem.ACTIONS(vertex.STATE) do
 child ← CHILD-NODE(problem, vertex, action)
 result ← RECURSIVE-DLS(child, problem, limit - 1)
 if results = cutoff then cutoff_occured? ← true
 else if result ≠ failure then return result
 if cutoff_occurred? then return cutoff else return failure

Depth-limited search performance

Completeness: incomplete if we choose l < d

Optimality: non-optimal if l > d

Choose a depth limit l

Assume a uniform tree where every state has b successors

Time complexity: O(bl)

Space complexity: O(bl)

When will breadth-first search outperform
depth-first search?

When will depth-first search outperform
breadth-first search?

Search and Models

• Search operates over models
of the world
‣ The agent doesn’t try all of the

plans in the real world

‣ Planning is all in simulation

‣ Therefore, your search is only
as good as your models

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

