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Homework #2 has been released 
It is due at 11:59PM on 9/30



Quick Recap: Search



Quick Recap: Search
Search problem: 
‣ States (configurations of the world) 
‣ Actions and costs 
‣ Successor function (world 
dynamics) 
‣ Start state and goal test

Search algorithm: 

‣ Systematically builds a search tree 

‣ Chooses an ordering of the fringe 
(unexplored nodes) 

‣ Optimal: finds least-cost plans

Search tree: 

‣ Vertices: represent plans for 
reaching states 
‣ Plans have costs (sum of 
action costs)



Quick Recap: Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Breadth-First Search

Depth-First Search



What was wrong with uninformed 
search?

• Did not make use of problem-specific knowledge 
beyond the definition of the problem itself

• Was not efficient



Informed Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



New Aspects of Informed Search

The general approach we will consider is best-first search
‣  Instance of TREE-SEARCH or GRAPH-SEARCH

A vertex is selected for expansion based on an evaluation 
function, f (v) 
‣  vertex v with the lowest evaluation is expanded first

Most best-first search algorithms include as a component 
of a heuristic function, h(v) 
‣  h(v) = estimated cost of the cheapest path from the 

site at vertex v to a goal state



Search Heuristics
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Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

A heuristic in this context is:
• A function that estimates how close a state 

is to a goal 
• Designed for a particular search problem 
• Examples: Manhattan distance, Euclidean 

distance for path planning
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h(v)



Greedy Best-First Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Greedy Best-First Search

Strategy: expand the vertex that is closest to the goal

Assumption: this is likely to lead to a solution quickly

Heuristic Function: f (v) = h(v)

…
b

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 
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h(v)

Example with the following heuristic



Practical Problems with Greedy 
Best-First Search

…
b

Sllide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

A common case: best first takes 
you straight to the wrong goal

The worst case: like a badly 
guided depth-first search



Analysis of Greedy Best-First Search

Completeness: incomplete in a finite state space (just 
like depth-first search)

Optimality: the algorithm is not optimal 
‣  In our example, we found the path Arad → Sibiu → Fagaras 
→ Bucharest. But this is 32KM longer than the path going 
from Arad → Sibiu → Rimnicu Vilcea → Pitesti → Bucharest.

Assume a uniform tree where every state has b successors 

Time complexity: O(bm), where m is the maximum depth 
of the search space

Space complexity: O(bm)



A* Search
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A* Search

A* search is the most widely known form of best-first search

g(v): the cost to reach the vertex

h(v): the cost to get from the vertex to the goal

Vertices are evaluated via: f (v) = g(v) + h(v)

i.e., f (v) = estimated cost of the cheapest solution through v



Image Credit: Russel and Norvig

h(v)

Example with the following heuristic

g(v): path costs in graph



Visual Example of A* Search

https://bgrins.github.io/javascript-astar/demo/



Conditions for Optimality in TREE-SEARCH: 
Admissibility

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Inadmissible (pessimistic) 
heuristics break optimality by 
trapping good plans on the 
fringe 

Admissible (optimistic) 
heuristics slow down bad plans 
but never outweigh true costs 



Conditions for Optimality in TREE-SEARCH: 
Admissibility

A heuristic h is admissible (optimistic) if:

0 ≤ h(v) ≤ h*(v) 

15Example:

where h*(v) is the true cost to a nearest goal

Coming up with admissible heuristics is most of what is 
involved in using A* in practice. 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Conditions for Optimality in GRAPH-SEARCH: 
Consistency

h(v) is consistent if:

For every vertex v and every successor v' of v generated by any 
action a, the estimated cost of reaching the goal from v is not 
greater than the step cost of getting v' plus the estimated cost of 
reaching the goal from v'

h(v) ≤ c(v, a, v') + h(v') ← Form of the triangle inequality



Optimality of A* TREE-SEARCH

…

Assume:
• A is an optimal goal vertex 

• B is a suboptimal goal vertex 

• h is admissible

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Claim:
• A will exit the fringe before B



Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe 

• Some ancestor n of A is on the 
fringe, too (possibly A!) 

• Claim: n will be expanded 
before B 

1. f (n) is less or equal to f (A)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

f (n) = g(n) + h(n) 

f (n) ≤ g(A) 

g(A) = f (A)

Definition of f-cost
Admissibility of h
h = 0 at a goal



Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe 

• Some ancestor n of A is on the 
fringe, too (possibly A!) 

• Claim: n will be expanded 
before B 

1. f (n) is less or equal to f (A) 
2. f (A) is less than f (B)

g(A) < g(B) 

f (A) < f (B)
B is suboptimal
h = 0 at a goal

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe 

• Some ancestor n of A is on the 
fringe, too (possibly A!) 

• Claim: n will be expanded 
before B 

1. f (n) is less or equal to f (A) 
2. f (A) is less than f (B) 
3. n expands before B

f (n) ≤  f (A) < f (B)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Optimality of A* TREE-SEARCH

…• All ancestors of A 
expand before B 

• A expands before B 

• A* search is optimal

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Complexity and Completeness of A*

Completeness: A* search is complete

Depth of tree: d

Assume a uniform tree where every state has b successors 

Time complexity: O(|E|) = O(bd)

Space complexity: O(|V|) = O(bd)



Applications of A* Search

Originally developed 
as a path planner for 
Shakey the Robot at 
Stanford (1968)

SRI Shakey with callouts      BY-SA 3.0 SRI International



Applications of A* Search

games-like-age-of-empires-798x350      BY 2.0 Siddhartha Thota

Commonly used in games where terrain is mapped to a grid


