
Informed Search: A* Search

CSE 40171:
Artificial Intelligence

�1

�2

Homework #2 has been released
It is due at 11:59PM on 9/30

Quick Recap: Search

Quick Recap: Search
Search problem:
‣ States (configurations of the world)
‣ Actions and costs
‣ Successor function (world
dynamics)
‣ Start state and goal test

Search algorithm:

‣ Systematically builds a search tree

‣ Chooses an ordering of the fringe
(unexplored nodes)

‣ Optimal: finds least-cost plans

Search tree:

‣ Vertices: represent plans for
reaching states
‣ Plans have costs (sum of
action costs)

Quick Recap: Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Breadth-First Search

Depth-First Search

What was wrong with uninformed
search?

• Did not make use of problem-specific knowledge
beyond the definition of the problem itself

• Was not efficient

Informed Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

New Aspects of Informed Search

The general approach we will consider is best-first search
‣ Instance of TREE-SEARCH or GRAPH-SEARCH

A vertex is selected for expansion based on an evaluation
function, f (v)
‣ vertex v with the lowest evaluation is expanded first

Most best-first search algorithms include as a component
of a heuristic function, h(v)
‣ h(v) = estimated cost of the cheapest path from the

site at vertex v to a goal state

Search Heuristics

10

5
11.2

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

A heuristic in this context is:
• A function that estimates how close a state

is to a goal
• Designed for a particular search problem
• Examples: Manhattan distance, Euclidean

distance for path planning

Image Credit: Russel and Norvig

h(v)

Greedy Best-First Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Greedy Best-First Search

Strategy: expand the vertex that is closest to the goal

Assumption: this is likely to lead to a solution quickly

Heuristic Function: f (v) = h(v)

…
b

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Image Credit: Russel and Norvig

h(v)

Example with the following heuristic

Practical Problems with Greedy
Best-First Search

…
b

Sllide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

A common case: best first takes
you straight to the wrong goal

The worst case: like a badly
guided depth-first search

Analysis of Greedy Best-First Search

Completeness: incomplete in a finite state space (just
like depth-first search)

Optimality: the algorithm is not optimal
‣ In our example, we found the path Arad → Sibiu → Fagaras
→ Bucharest. But this is 32KM longer than the path going
from Arad → Sibiu → Rimnicu Vilcea → Pitesti → Bucharest.

Assume a uniform tree where every state has b successors

Time complexity: O(bm), where m is the maximum depth
of the search space

Space complexity: O(bm)

A* Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

A* Search

A* search is the most widely known form of best-first search

g(v): the cost to reach the vertex

h(v): the cost to get from the vertex to the goal

Vertices are evaluated via: f (v) = g(v) + h(v)

i.e., f (v) = estimated cost of the cheapest solution through v

Image Credit: Russel and Norvig

h(v)

Example with the following heuristic

g(v): path costs in graph

Visual Example of A* Search

https://bgrins.github.io/javascript-astar/demo/

Conditions for Optimality in TREE-SEARCH:
Admissibility

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Inadmissible (pessimistic)
heuristics break optimality by
trapping good plans on the
fringe

Admissible (optimistic)
heuristics slow down bad plans
but never outweigh true costs

Conditions for Optimality in TREE-SEARCH:
Admissibility

A heuristic h is admissible (optimistic) if:

0 ≤ h(v) ≤ h*(v)

15Example:

where h*(v) is the true cost to a nearest goal

Coming up with admissible heuristics is most of what is
involved in using A* in practice.

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Conditions for Optimality in GRAPH-SEARCH:
Consistency

h(v) is consistent if:

For every vertex v and every successor v' of v generated by any
action a, the estimated cost of reaching the goal from v is not
greater than the step cost of getting v' plus the estimated cost of
reaching the goal from v'

h(v) ≤ c(v, a, v') + h(v') ← Form of the triangle inequality

Optimality of A* TREE-SEARCH

…

Assume:
• A is an optimal goal vertex

• B is a suboptimal goal vertex

• h is admissible

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Claim:
• A will exit the fringe before B

Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe

• Some ancestor n of A is on the
fringe, too (possibly A!)

• Claim: n will be expanded
before B

1. f (n) is less or equal to f (A)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

f (n) = g(n) + h(n)

f (n) ≤ g(A)

g(A) = f (A)

Definition of f-cost
Admissibility of h
h = 0 at a goal

Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe

• Some ancestor n of A is on the
fringe, too (possibly A!)

• Claim: n will be expanded
before B

1. f (n) is less or equal to f (A)
2. f (A) is less than f (B)

g(A) < g(B)

f (A) < f (B)
B is suboptimal
h = 0 at a goal

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Optimality of A* TREE-SEARCH

…

Proof:
• Assume B is on the fringe

• Some ancestor n of A is on the
fringe, too (possibly A!)

• Claim: n will be expanded
before B

1. f (n) is less or equal to f (A)
2. f (A) is less than f (B)
3. n expands before B

f (n) ≤ f (A) < f (B)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Optimality of A* TREE-SEARCH

…• All ancestors of A
expand before B

• A expands before B

• A* search is optimal

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Complexity and Completeness of A*

Completeness: A* search is complete

Depth of tree: d

Assume a uniform tree where every state has b successors

Time complexity: O(|E|) = O(bd)

Space complexity: O(|V|) = O(bd)

Applications of A* Search

Originally developed
as a path planner for
Shakey the Robot at
Stanford (1968)

SRI Shakey with callouts BY-SA 3.0 SRI International

Applications of A* Search

games-like-age-of-empires-798x350 BY 2.0 Siddhartha Thota

Commonly used in games where terrain is mapped to a grid

