
Informed Search: Search Heuristics

CSE 40171:  
Artificial Intelligence
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Homework #2 has been released 
It is due at 11:59PM on 9/30



Where do heuristics come from?



 A good heuristic can go a long way…

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in 
coming up with admissible heuristics

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available
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Inadmissible heuristics are often useful too



Case Study: the 8-puzzle



Start State Goal State

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

How many steps long is the solution?



8-puzzle Stats

Average Solution Cost: about 22 steps

Branching Factor: about 3 steps

Exhaustive Tree Search: 322 ≈ 3.1 × 1010 states

Graph Search: 9!/2 = 181,440 states 
‣ But the corresponding number for the 15-puzzle is 1013 

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Large Numbers and Search Spaces

How large is a state 
space of 10 trillion 
possibilities? 

On a 3.1Ghz Core i7, it takes: 
‣  3m42.240s  to enumerate 1010 states (exhaustive 8-puzzle)

Heuristics are needed to speed this up!



Heuristic Function #1

h1 = the number of misplaced tiles

All eight tiles are out of position
Start state: h1 = 8

Q: Why is this heuristic admissible?
A: Any tile that is out of place must be moved at 
least once

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Heuristic Function #2

h2 = the sum of the distances of the tiles from their goal 
positions

Tiles can’t move along diagonals, so what do we do?

×

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Manhattan Distance

Manhattan distance bgiu        BY-SA 3.0 XaraX

The distance between two points in 
a grid based on a strictly horizontal 
and / or vertical path

where



Heuristic Function #2
For this start state:

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Q: Why is this heuristic admissible?
A: Any tile that is out of place must be moved at 
least once

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Effective Branching Factor

N = the total number of vertices generated by A* 
d = the solution depth 
b* = the branching factor that a uniform tree of depth d  
would need to contain N+1 vertices

N + 1 = 1 + b* + (b*)2 + … + (b*)d

Example: if A* finds a solution at depth 5 using 52 
vertices, then the effective branching factor is 1.92



Effective Branching Factor
A well-designed heuristic has a value of b* close to 1

How do h1 and h2 stack up?

Image Credit: Russel and Norvig



Is h2 always better than h1?

Yes: for any vertex v, h2(v) ≥ h1(v)

Assume C* is the cost of the optimal solution path 

Every vertex with f (v) < C* will be expanded

i.e., h(v) < C* − g(v) will be expanded

Every vertex expanded by h2 will also be 
expanded by h1, but h1 may expand 
others as well



Relaxed Problems

What if a tile could move 
anywhere?

What if a tile could move 
one square in any 
direction — even onto 
an occupied square?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Example: 8-puzzle

Original Problem:
A tile can move from square A to square B if 
   A is horizontally or vertically adjacent to B and B is blank

Three Relaxed Problems:
(a) A tile can move from square A to square B if A is adjacent to B 

(b) A tile can move from square A to square B if B is blank

(c) A tile can move from square A to square B

Can derive manhattan distance 
from this one



Which heuristic do we want?

If a collection of admissible heuristics h1, … , hm is available, 
but none of them dominates any of the others, which should 
we choose?

Use a composite heuristic that is most accurate on the vertex 
in question:

h(v) = max{h1(v), …, hm(v)}



Subproblems

*
*
*

*

The task is to get tiles 1, 2, 3, 4 
into their correct positions

The cost of this subproblem is a lower bound on the cost 
of the complete problem.

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Pattern Databases

• Store the exact solution costs 
for every possible subproblem 
instance

• Compute an admissible 
heuristic hDB for each complete 
state by looking up a 
corresponding subproblem 
configuration

• Don’t build all at once; add to 
DB for each new problem 
instance



Pattern Databases

5-6-7-8 2-4-6-8 …

Each database yields an admissible heuristic

Heuristics can be combined by taking the maximum value



Disjoint Pattern Databases

# of 5-6-7-8 
moves

# of 1-2-3-4 
moves

+

Sum is a lower bound on the cost of solving the entire problem

Speed-up achieved is several orders of magnitude



Pattern Databases

Rather shoddy strategy for modeling intelligence

= ?



Were the preceding strategies for 
coming up with heuristics good?



A better approach: learn from 
experience



Learning Heuristics From Experience

How can we do this with the 8-puzzle?

Solve a lot of 8-puzzles…

h(v) can be learned from examples from optimal puzzle 
solutions

Each example consists of a state from the solution path 
and the cost of the solution from that point

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Applicable Learning Algorithms

Decision tree for detecting a 3-clique in a 4-vertex graph 
BY-SA 3.0 Thore Husfeldt

Neural Networks

Decision Trees



Features

For search, learning works well when features are 
available that predict a state’s value, rather than just a 
raw state description

Example for the 8-puzzle:

x1(v) = number of misplaced tiles

x2(v) = number of pairs of adjacent tiles that are not 
adjacent in the goal state



Combining Features

A common approach is to use a linear 
combination of features:

h(v) = c1x1(v) + c2x2(v)

Constants

c1 and c2 are adjusted to give the best fit to the 
underlying data on solution costs. 



Lots of options for real problems



We will have a lot more to say about 
search and machine learning later…


