
Informed Search: Search Heuristics

CSE 40171:
Artificial Intelligence

�31

�32

Homework #2 has been released
It is due at 11:59PM on 9/30

Where do heuristics come from?

 A good heuristic can go a long way…

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Creating Admissible Heuristics
Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

15
366

Inadmissible heuristics are often useful too

Case Study: the 8-puzzle

Start State Goal State

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

How many steps long is the solution?

8-puzzle Stats

Average Solution Cost: about 22 steps

Branching Factor: about 3 steps

Exhaustive Tree Search: 322 ≈ 3.1 × 1010 states

Graph Search: 9!/2 = 181,440 states
‣ But the corresponding number for the 15-puzzle is 1013

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Large Numbers and Search Spaces

How large is a state
space of 10 trillion
possibilities?

On a 3.1Ghz Core i7, it takes:
‣ 3m42.240s to enumerate 1010 states (exhaustive 8-puzzle)

Heuristics are needed to speed this up!

Heuristic Function #1

h1 = the number of misplaced tiles

All eight tiles are out of position
Start state: h1 = 8

Q: Why is this heuristic admissible?
A: Any tile that is out of place must be moved at
least once

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Heuristic Function #2

h2 = the sum of the distances of the tiles from their goal
positions

Tiles can’t move along diagonals, so what do we do?

×

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Manhattan Distance

Manhattan distance bgiu BY-SA 3.0 XaraX

The distance between two points in
a grid based on a strictly horizontal
and / or vertical path

where

Heuristic Function #2
For this start state:

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Q: Why is this heuristic admissible?
A: Any tile that is out of place must be moved at
least once

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Effective Branching Factor

N = the total number of vertices generated by A*
d = the solution depth
b* = the branching factor that a uniform tree of depth d
would need to contain N+1 vertices

N + 1 = 1 + b* + (b*)2 + … + (b*)d

Example: if A* finds a solution at depth 5 using 52
vertices, then the effective branching factor is 1.92

Effective Branching Factor
A well-designed heuristic has a value of b* close to 1

How do h1 and h2 stack up?

Image Credit: Russel and Norvig

Is h2 always better than h1?

Yes: for any vertex v, h2(v) ≥ h1(v)

Assume C* is the cost of the optimal solution path

Every vertex with f (v) < C* will be expanded

i.e., h(v) < C* − g(v) will be expanded

Every vertex expanded by h2 will also be
expanded by h1, but h1 may expand
others as well

Relaxed Problems

What if a tile could move
anywhere?

What if a tile could move
one square in any
direction — even onto
an occupied square?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Example: 8-puzzle

Original Problem:
A tile can move from square A to square B if
 A is horizontally or vertically adjacent to B and B is blank

Three Relaxed Problems:
(a) A tile can move from square A to square B if A is adjacent to B

(b) A tile can move from square A to square B if B is blank

(c) A tile can move from square A to square B

Can derive manhattan distance
from this one

Which heuristic do we want?

If a collection of admissible heuristics h1, … , hm is available,
but none of them dominates any of the others, which should
we choose?

Use a composite heuristic that is most accurate on the vertex
in question:

h(v) = max{h1(v), …, hm(v)}

Subproblems

*
*
*

*

The task is to get tiles 1, 2, 3, 4
into their correct positions

The cost of this subproblem is a lower bound on the cost
of the complete problem.

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Pattern Databases

• Store the exact solution costs
for every possible subproblem
instance

• Compute an admissible
heuristic hDB for each complete
state by looking up a
corresponding subproblem
configuration

• Don’t build all at once; add to
DB for each new problem
instance

Pattern Databases

5-6-7-8 2-4-6-8 …

Each database yields an admissible heuristic

Heuristics can be combined by taking the maximum value

Disjoint Pattern Databases

of 5-6-7-8
moves

of 1-2-3-4
moves

+

Sum is a lower bound on the cost of solving the entire problem

Speed-up achieved is several orders of magnitude

Pattern Databases

Rather shoddy strategy for modeling intelligence

= ?

Were the preceding strategies for
coming up with heuristics good?

A better approach: learn from
experience

Learning Heuristics From Experience

How can we do this with the 8-puzzle?

Solve a lot of 8-puzzles…

h(v) can be learned from examples from optimal puzzle
solutions

Each example consists of a state from the solution path
and the cost of the solution from that point

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Applicable Learning Algorithms

Decision tree for detecting a 3-clique in a 4-vertex graph
BY-SA 3.0 Thore Husfeldt

Neural Networks

Decision Trees

Features

For search, learning works well when features are
available that predict a state’s value, rather than just a
raw state description

Example for the 8-puzzle:

x1(v) = number of misplaced tiles

x2(v) = number of pairs of adjacent tiles that are not
adjacent in the goal state

Combining Features

A common approach is to use a linear
combination of features:

h(v) = c1x1(v) + c2x2(v)

Constants

c1 and c2 are adjusted to give the best fit to the
underlying data on solution costs.

Lots of options for real problems

We will have a lot more to say about
search and machine learning later…

