
Constraint Satisfaction Problems: Inference and 
Backtracking Search

CSE 40171:  
Artificial Intelligence
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Homework #3 has been released 
It is due at 11:59PM on 10/9



�30

In the regular state-space search 
algorithms, we could only do one thing:

Search
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With CSPs, we can do two things: 
1. Search
2. Use constraints to reduce the number of 

legal values for a variable

And this reduction can propagate to 
neighboring variables



Local Consistency

Enforcing local consistency in 
each part of the graph causes 
inconsistent values to be 
eliminated throughout the graph

So where do we enforce it?



Vertex Consistency

In South Australia, the color 
green is disliked

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Vertex Consistency

In South Australia, the 
color green is disliked

Starting Domain: {red, green, blue}

Reduced Domain: {red, blue}

A single variable is vertex-consistent if all the values in its 
domain stratify its unary constraints

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Edge Consistency

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

An edge X → Y is consistent iff for every x in the tail there is some y 
in the head which could be assigned without violating a constraint 

Forward Checking: Enforcing consistency of edges pointing to each 
new assignment

WA SA

NT Q

NSW

V



Edge Consistency of an Entire CSP

WA SA
NT Q

NSW

V

A simple form of propagation makes sure all edges are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked 
• Edge consistency detects failure earlier than forward checking 
• Can be run as a preprocessor or after each assignment  
• What’s the downside of enforcing edge consistency?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Remember: Delete 
from the tail!



Enforcing Edge Consistency in a CSP

• Runtime: O(n2d3), can be reduced to O(n2d2) 

• …but detecting all possible future problems is NP-hard – why?



Limitations of Edge Consistency

• Can have one solution left 
• Can have multiple solutions left 
• Can have no solutions left (and not know it)

After enforcing arc consistency:

What went wrong here?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Path Consistency

Tightens the binary constraints by using implicit constraints that 
are inferred by looking at triples of variables

WA SA

NT Q

NSW

V

Let’s color the map with two colors:

Make the set {WA, SA} path consistent with 
respect to NT

Two options: {WA = red, SA = blue} and {WA = blue, SA = red} 

What do we assign to NT ?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



K-consistency

Let’s generalize the notion of consistency:

A CSP is K-consistent if, for any set of k − 1 
variables, and for any consistent assignment to 
those variables, a consistent value can always be 
assigned to any kth variable.

1-consistency?

2-consistency?

3-consistency?

vertex consistency

edge consistency

path consistency



K-consistency
A CSP is strongly K-consistent if it is also (k − 1)-consistent, 
(k − 2)-consistent, all the way down to 1-consistent.

Assume we have a CSP with n nodes and want to make it 
strongly n-consistent:

For each variable Xi, we only need to search through the d 
values in the domain to find a value consistent with X1, … , Xi-1.

Guaranteed solution in time O(n2d)

time is exponential in 
n in the worst case!

space is also 
exponential in n!



Global Constraints

The Alldiff constraint states that all variables involved 
must have distinct values

WA SA

NT Q

NSW

V

Inconsistency detector: if m variables are involved in the 
constraint, and if they have n possible district values, and 
m > n, then the constraint cannot be satisfied

Can we detect the inconsistency in the 
assignment {WA = red, NSW = red}?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Resource Constraints

We can also have an Atmost constraint, meaning no more 
than n resources can be assigned

Scheduling Example: 

# of personnel assigned to 4 tasks: P1, … , P4

Constraint that no more than 10 people are assigned: 
Atmost (10, P1, P2, P3, P4)

If the domain of each variable is {3, 4, 5, 6}, is Atmost satisfied? 



Bounds Propagation

Capacity: 165 Capacity: 385
D1 = [0, 165] D2 = [0, 385]

Additional Constraint: the two flights must carry 420 people

D1 = [35, 165] D2 = [255, 385]



Backtracking Search



Backtracking Search

Some problems, like Sudoku, can be solved by 
inference over constraints 

‣ But this is not true for all problems 

Backtracking search is the basic uninformed 
algorithm for solving CSPs



Idea 1: One variable at a time

• Variable assignments are commutative, so fix ordering 

• For example, [WA = red then NT = green] is the same as [NT = 
green then WA = red] 

• Only need to consider assignments to a single variable at 
each step

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Idea 2: Check constraints as you go

• For example, consider only values which do not conflict 
with previous assignments 

• Might have to do some computation to check the 
constraints 

• “Incremental goal test”

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Backtracking Example

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Backtracking Search

Backtracking = DFS + variable-ordering + fail-on-violation 



Improving Backtracking Search

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

• General-purpose ideas give huge gains in 
speed 

• Filtering: Can we detect inevitable failure 
early? 

• Ordering 

• Structure: Can we exploit the problem 
structure?

‣ Which variable should be assigned next? 

‣ In what order should its values be tried?



Filtering

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Filtering: Forward Checking
Filtering: Keep track of domains for unassigned variables 
and cross off bad options

Forward checking: Cross off values that violate a constraint 
when added to the existing assignment

WA
SA
NT Q

NSW
V

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Ordering

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):

Choose the variable with the fewest legal values left in its 
domain

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Ordering: Minimum Remaining Values

Why min rather than max?

Also called “most constrained 
variable”

“Fail-fast” ordering

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Ordering: Least Constraining Value 

Value Ordering: Least 
Constraining Value

• Given a choice of variable, choose the least constraining value

• For example, the one that rules out the fewest values in the remaining 
variables

• Note that it may take some computation to determine this (e.g., 
rerunning filtering)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Ordering: Least Constraining Value 

Why least rather than most? 

‣  Combining these ordering ideas makes problems 
like 1000 queens feasible

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Structure

• These solutions we’ve seen before: 
- Check the consistency of a single edge 

- Check the edge consistency of an entire CSP 
‣ The AC-3 algorithm!


