
Constraint Satisfaction Problems: Inference and
Backtracking Search

CSE 40171:
Artificial Intelligence

�28

�29

Homework #3 has been released
It is due at 11:59PM on 10/9

�30

In the regular state-space search
algorithms, we could only do one thing:

Search

�31

With CSPs, we can do two things:
1. Search
2. Use constraints to reduce the number of

legal values for a variable

And this reduction can propagate to
neighboring variables

Local Consistency

Enforcing local consistency in
each part of the graph causes
inconsistent values to be
eliminated throughout the graph

So where do we enforce it?

Vertex Consistency

In South Australia, the color
green is disliked

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Vertex Consistency

In South Australia, the
color green is disliked

Starting Domain: {red, green, blue}

Reduced Domain: {red, blue}

A single variable is vertex-consistent if all the values in its
domain stratify its unary constraints

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Edge Consistency

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

An edge X → Y is consistent iff for every x in the tail there is some y
in the head which could be assigned without violating a constraint

Forward Checking: Enforcing consistency of edges pointing to each
new assignment

WA SA

NT Q

NSW

V

Edge Consistency of an Entire CSP

WA SA
NT Q

NSW

V

A simple form of propagation makes sure all edges are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked
• Edge consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing edge consistency?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Remember: Delete
from the tail!

Enforcing Edge Consistency in a CSP

• Runtime: O(n2d3), can be reduced to O(n2d2)

• …but detecting all possible future problems is NP-hard – why?

Limitations of Edge Consistency

• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not know it)

After enforcing arc consistency:

What went wrong here?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Path Consistency

Tightens the binary constraints by using implicit constraints that
are inferred by looking at triples of variables

WA SA

NT Q

NSW

V

Let’s color the map with two colors:

Make the set {WA, SA} path consistent with
respect to NT

Two options: {WA = red, SA = blue} and {WA = blue, SA = red}

What do we assign to NT ?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

K-consistency

Let’s generalize the notion of consistency:

A CSP is K-consistent if, for any set of k − 1
variables, and for any consistent assignment to
those variables, a consistent value can always be
assigned to any kth variable.

1-consistency?

2-consistency?

3-consistency?

vertex consistency

edge consistency

path consistency

K-consistency
A CSP is strongly K-consistent if it is also (k − 1)-consistent,
(k − 2)-consistent, all the way down to 1-consistent.

Assume we have a CSP with n nodes and want to make it
strongly n-consistent:

For each variable Xi, we only need to search through the d
values in the domain to find a value consistent with X1, … , Xi-1.

Guaranteed solution in time O(n2d)

time is exponential in
n in the worst case!

space is also
exponential in n!

Global Constraints

The Alldiff constraint states that all variables involved
must have distinct values

WA SA

NT Q

NSW

V

Inconsistency detector: if m variables are involved in the
constraint, and if they have n possible district values, and
m > n, then the constraint cannot be satisfied

Can we detect the inconsistency in the
assignment {WA = red, NSW = red}?

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Resource Constraints

We can also have an Atmost constraint, meaning no more
than n resources can be assigned

Scheduling Example:

of personnel assigned to 4 tasks: P1, … , P4

Constraint that no more than 10 people are assigned:
Atmost (10, P1, P2, P3, P4)

If the domain of each variable is {3, 4, 5, 6}, is Atmost satisfied?

Bounds Propagation

Capacity: 165 Capacity: 385
D1 = [0, 165] D2 = [0, 385]

Additional Constraint: the two flights must carry 420 people

D1 = [35, 165] D2 = [255, 385]

Backtracking Search

Backtracking Search

Some problems, like Sudoku, can be solved by
inference over constraints

‣ But this is not true for all problems

Backtracking search is the basic uninformed
algorithm for solving CSPs

Idea 1: One variable at a time

• Variable assignments are commutative, so fix ordering

• For example, [WA = red then NT = green] is the same as [NT =
green then WA = red]

• Only need to consider assignments to a single variable at
each step

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Idea 2: Check constraints as you go

• For example, consider only values which do not conflict
with previous assignments

• Might have to do some computation to check the
constraints

• “Incremental goal test”

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Backtracking Example

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Backtracking Search

Backtracking = DFS + variable-ordering + fail-on-violation

Improving Backtracking Search

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

• General-purpose ideas give huge gains in
speed

• Filtering: Can we detect inevitable failure
early?

• Ordering

• Structure: Can we exploit the problem
structure?

‣ Which variable should be assigned next?

‣ In what order should its values be tried?

Filtering

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Filtering: Forward Checking
Filtering: Keep track of domains for unassigned variables
and cross off bad options

Forward checking: Cross off values that violate a constraint
when added to the existing assignment

WA
SA
NT Q

NSW
V

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Ordering

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):

Choose the variable with the fewest legal values left in its
domain

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Ordering: Minimum Remaining Values

Why min rather than max?

Also called “most constrained
variable”

“Fail-fast” ordering

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Ordering: Least Constraining Value

Value Ordering: Least
Constraining Value

• Given a choice of variable, choose the least constraining value

• For example, the one that rules out the fewest values in the remaining
variables

• Note that it may take some computation to determine this (e.g.,
rerunning filtering)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Ordering: Least Constraining Value

Why least rather than most?

‣ Combining these ordering ideas makes problems
like 1000 queens feasible

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Structure

• These solutions we’ve seen before:
- Check the consistency of a single edge

- Check the edge consistency of an entire CSP
‣ The AC-3 algorithm!

