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Problem Structure
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Homework #3 has been released 
It is due at 11:59PM on 10/9



Local vs. Global Search: What are the 
advantages and disadvantages?



Local Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Local Search

What if the path to the goal does matter?

Consider a class of algorithms that do not worry about 
paths at all

‣  Local search algorithms operate using a single current 
vertex

‣  Make moves only to neighbors of the current vertex 



Local Search
• Tree search keeps unexplored alternatives on the fringe 

(ensures completeness) 

• Local search: improve a single option until you can’t make 
it better (no fringe!) 

• New successor function: local changes

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Two Key Advantages

1. They use very little memory — usually a constant 
amount 

2. They can often find reasonable solutions in large or 
infinite (continuous) states spaces for which 
systematic algorithms are unsuitable



Two Possible Disadvantages

1. Incomplete 

2. Suboptimal



Objective Functions

Local search algorithms are also useful for solving pure 
optimization problems 

‣ Such problems aim to find the best state according to an 
objective function

maximize or minimize Z =
nX

i=1

ciXi

Example:

ci = the objective function coefficient corresponding to 
the ith variable, and

Xi = the ith decision variable.



State-Space Landscape

Image Credit: Russel and Norvig



Hill Climbing

Simple, general idea:
‣ Start wherever 

‣ Repeat: move to the best neighboring state 

‣ If no neighbors better than current, quit

‣ Complete? 

‣ Optimal?

What’s bad about this approach?

What’s good about it?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Hill Climbing Quiz

1. Starting from X, where do you end up?

2. Starting from Y, where do you end up?

3. Starting from Z, where do you end up?
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



function MIN-CONFLICTS( csp, max_steps ) returns a solution or failure 
inputs: csp, a constraint satisfaction problem 

max_steps, the number of steps allows before giving up  
    

current ← an initial complete assignment for csp 
     for i = 1 to max_steps do 

     if current is a solution for csp then return current 
          var ← a randomly chosen conflicted variable from csp.VARIABLES 
          value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)    
          set var = value in current 

return failure



A two-step solution using min-conflicts

Image Credit: Russel and Norvig



Simulated Annealing





Simulated Annealing

Theoretical guarantee:

‣ Stationary distribution: 

‣ If T decreased slowly enough will converge to optimal state!

Is this an interesting guarantee?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



 Simulated Annealing

Sounds like magic, but reality is reality:

‣ The more downhill steps you need to escape a local optimum, 
the less likely you are to ever make them all in a row 

‣ People think hard about ridge operators which let you jump 
around the space in better ways



Genetic Algorithms

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Genetic Algorithms

Genetic algorithms use a natural selection metaphor 

‣Keep best N hypotheses at each step (selection) based 
on a fitness function 
‣Also have pairwise crossover operators, with optional 

mutation to give variety

Possibly the most misunderstood, misapplied (and even 
maligned) technique around

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Genetic Algorithms

Image Credit: Russel and Norvig



Example: N-Queens 

1. Why does crossover make sense here?

Image Credit: Russel and Norvig

2. When wouldn’t it make sense?

3. What would mutation be?

4. What would a good fitness function be?



Structure



Problem Structure

Extreme case: independent subproblems 

‣ Example: Tasmania and mainland do 
not interact 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Independent subproblems are identifiable as 
connected components of constraint graph 

Suppose a graph of n variables can be broken into 
subproblems of only c variables: 

‣ Worst-case solution cost is O((n/c)(dc)), linear in n 
‣ e.g., n = 80, d = 2, c = 20 
‣ 280 = 4 billion years at 10 million vertices/sec 
‣ (4)(220) = 0.4 seconds at 10 million vertices/sec 



Tree Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can 
be solved in O(nd2) time 

‣Compare to general CSPs, where worst-case time is O(dn) 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Tree Structured CSPs

Algorithm for tree-structured CSPs:

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

‣Order: Choose a root variable, order variables so that parents 
precede children 



Tree Structured CSPs

Remove backward: for i = n : 2, apply RemoveInconsistent(Parent(Xi), Xi)

Assign forward: for i = 1 : n, assign Xi consistently with Parent(Xi)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Tree Structured CSPs

Claim 1: After backward pass, all root-to-leaf edges are consistent 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Proof: Each X→Y was made consistent at one point and Y’s domain 
could not have been reduced thereafter (because Y’s children were 
processed before Y) 



Tree Structured CSPs

Claim 2: If root-to-leaf edges are consistent, forward assignment will 
not backtrack

Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph? 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Nearly Tree Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains 

Cutset conditioning: instantiate (in all ways) a set of variables such 
that the remaining constraint graph is a tree

Cutset size c gives runtime O( (dc) (n - c) d2 ), very fast for small c
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Cutset Conditioning

SA

Choose a cutset

Instantiate the cutset 
(all possible ways)

SA SA SA

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



M3 M4M2M1

Tree Decomposition

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Idea: create a tree-structured graph of 
mega-variables 

Each mega-variable encodes part of the 
original CSP

Subproblems overlap to ensure consistent solutions 
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{(WA=r,SA=g,NT=b),      
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree on    shared vars

Agree on    shared vars

Agree on    shared vars

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}


