CSE 40171: Artificial Intelligence

Constraint Satisfaction Problems: Local Search and Problem Structure
Homework #3 has been released
It is due at 11:59PM on 10/9
Local vs. Global Search: What are the advantages and disadvantages?
Local Search
Local Search

What if the path to the goal does matter?

Consider a class of algorithms that do not worry about paths at all

- Local search algorithms operate using a single current vertex
- Make moves only to neighbors of the current vertex
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can’t make it better (no fringe!)
- New successor function: local changes
Two Key Advantages

1. They use very little memory — usually a constant amount

2. They can often find reasonable solutions in large or infinite (continuous) states spaces for which systematic algorithms are unsuitable
Two Possible Disadvantages

1. Incomplete
2. Suboptimal
Local search algorithms are also useful for solving pure optimization problems.

- Such problems aim to find the best state according to an objective function.

Example:

maximize or minimize $Z = \sum_{i=1}^{n} c_i X_i$

$c_i =$ the objective function coefficient corresponding to the i^{th} variable, and

$X_i =$ the i^{th} decision variable.
Hill Climbing

Simple, general idea:

‣ Start wherever
‣ Repeat: move to the best neighboring state
‣ If no neighbors better than current, quit

What’s bad about this approach?

‣ Complete?
‣ Optimal?

What’s good about it?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188
Hill Climbing Quiz

1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allows before giving up

current ← an initial complete assignment for csp

for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp.VARIABLES
 value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var = value in current

return failure
A two-step solution using min-conflicts
Simulated Annealing

Temperature: 25.0
function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem
 schedule, a mapping from time to “temperature”

local variables: current, a node
 next, a node
 T, a “temperature” controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do
 T ← schedule[t]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← VALUE[next] − VALUE[current]
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE/T}$
Simulated Annealing

Theoretical guarantee: \(p(x) \propto e^{\frac{E(x)}{kT}} \)

- Stationary distribution:
 - If \(T \) decreased slowly enough will converge to optimal state!

Is this an interesting guarantee?
Simulated Annealing

Sounds like magic, but reality is reality:

- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways
Genetic Algorithms

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188
Genetic Algorithms

Genetic algorithms use a natural selection metaphor

- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around
Genetic Algorithms

Image Credit: Russel and Norvig
Example: N-Queens

1. Why does crossover make sense here?
2. When wouldn’t it make sense?
3. What would mutation be?
4. What would a good fitness function be?
Problem Structure

Extreme case: independent subproblems

- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:

- Worst-case solution cost is $O((n/c)(d^c))$, linear in n
- e.g., $n = 80$, $d = 2$, $c = 20$
- $2^{80} = 4$ billion years at 10 million vertices/sec
- $(4)(2^{20}) = 0.4$ seconds at 10 million vertices/sec
Tree Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time

- Compare to general CSPs, where worst-case time is $O(d^n)$
Tree Structured CSPs

Algorithm for tree-structured CSPs:

- Order: Choose a root variable, order variables so that parents precede children
Tree Structured CSPs

Remove backward: for $i = n : 2$, apply $\text{RemoveInconsistent}(\text{Parent}(X_i), X_i)$

Assign forward: for $i = 1 : n$, assign X_i consistently with $\text{Parent}(X_i)$
Tree Structured CSPs

Claim 1: After backward pass, all root-to-leaf edges are consistent

Proof: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)
Tree Structured CSPs

Claim 2: If root-to-leaf edges are consistent, forward assignment will not backtrack

Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?
Nearly Tree Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size c gives runtime $O((d^c)(n - c) d^2)$, very fast for small c

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188
Cutset Conditioning

- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
- Solve the residual CSPs (tree structured)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188
Tree Decomposition

Idea: create a tree-structured graph of mega-variables

Each mega-variable encodes part of the original CSP

Subproblems overlap to ensure consistent solutions

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188