#### CSE 40171: Artificial Intelligence



# Constraint Satisfaction Problems: Local Search and Problem Structure

#### Homework #3 has been released It is due at 11:59PM on 10/9

Local vs. Global Search: What are the advantages and disadvantages?

#### Local Search



#### Local Search

#### What if the path to the goal does matter?

Consider a class of algorithms that do not worry about paths at all

- Local search algorithms operate using a single current vertex
- Make moves only to neighbors of the current vertex

# Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes



# Two Key Advantages

- 1. They use very little memory usually a constant amount
- 2. They can often find reasonable solutions in large or infinite (continuous) states spaces for which systematic algorithms are unsuitable

#### Two Possible Disadvantages

1. Incomplete

2. Suboptimal

# **Objective Functions**

Local search algorithms are also useful for solving pure optimization problems

 Such problems aim to find the best state according to an objective function

#### **Example:**

maximize or minimize  $Z = \sum_{i=1}^{n} c_i X_i$ 

 $c_i$  = the objective function coefficient corresponding to the *i*<sup>th</sup> variable, and

 $X_i$  = the *i*<sup>th</sup> decision variable.

#### State-Space Landscape



# Hill Climbing

Simple, general idea:

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

What's bad about this approach?

- Complete?
- Optimal?

What's good about it?



# Hill Climbing Quiz



1. Starting from X, where do you end up?

- 2. Starting from Y, where do you end up?
- 3. Starting from Z, where do you end up?

function MIN-CONFLICTS( csp, max\_steps ) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max\_steps, the number of steps allows before giving up

*current*  $\leftarrow$  an initial complete assignment for *csp* 

for i = 1 to max\_steps do

if *current* is a solution for *csp* then return *current* 

 $var \leftarrow$  a randomly chosen conflicted variable from csp.VARIABLES

 $value \leftarrow$  the value v for var that minimizes CONFLICTS(var, v, current, csp) set var = value in current

return failure

#### A two-step solution using min-conflicts







# Simulated Annealing



```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next. a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(INITIAL-STATE[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

#### Simulated Annealing

Theoretical guarantee:  $p(x) \propto e^{\frac{E(x)}{kT}}$ 

- Stationary distribution:
- ▶ If *T* decreased slowly enough will converge to optimal state!

Is this an interesting guarantee?

# Simulated Annealing

Sounds like magic, but reality is reality:

- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways

#### Genetic Algorithms



# Genetic Algorithms

Genetic algorithms use a natural selection metaphor

- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around

#### Genetic Algorithms



**Fitness Selection** 

on Pairs

Cross-Over

Mutation

# Example: N-Queens



- 1. Why does crossover make sense here?
- 2. When wouldn't it make sense?
- 3. What would mutation be?
- 4. What would a good fitness function be?

#### Structure



# Problem Structure

Extreme case: independent subproblems

 Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:

- Worst-case solution cost is  $O((n/c)(d^c))$ , linear in n
- ▶ e.g., *n* = 80, *d* = 2, *c* = 20
- $2^{80} = 4$  billion years at 10 million vertices/sec
- ► (4)(2<sup>20</sup>) = 0.4 seconds at 10 million vertices/sec





Theorem: if the constraint graph has no loops, the CSP can be solved in  $O(nd^2)$  time

• Compare to general CSPs, where worst-case time is  $O(d^n)$ 

Algorithm for tree-structured CSPs:

 Order: Choose a root variable, order variables so that parents precede children





Remove backward: for i = n : 2, apply RemoveInconsistent(Parent( $X_i$ ),  $X_i$ )

Assign forward: for i = 1 : n, assign  $X_i$  consistently with Parent( $X_i$ )

Claim 1: After backward pass, all root-to-leaf edges are consistent

**Proof:** Each  $X \rightarrow Y$  was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)



Claim 2: If root-to-leaf edges are consistent, forward assignment will not backtrack

Proof: Induction on position



Why doesn't this algorithm work with cycles in the constraint graph?

# Nearly Tree Structured CSPs



Conditioning: instantiate a variable, prune its neighbors' domains

**Cutset conditioning:** instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size c gives runtime  $O((d^c)(n - c) d^2)$ , very fast for small c

# **Cutset Conditioning**



# Tree Decomposition

Idea: create a tree-structured graph of mega-variables

Each mega-variable encodes part of the original CSP

Subproblems overlap to ensure consistent solutions



