
Constraint Satisfaction Problems: Local Search and
Problem Structure

CSE 40171:
Artificial Intelligence

�62

�63

Homework #3 has been released
It is due at 11:59PM on 10/9

Local vs. Global Search: What are the
advantages and disadvantages?

Local Search

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Local Search

What if the path to the goal does matter?

Consider a class of algorithms that do not worry about
paths at all

‣ Local search algorithms operate using a single current
vertex

‣ Make moves only to neighbors of the current vertex

Local Search
• Tree search keeps unexplored alternatives on the fringe

(ensures completeness)

• Local search: improve a single option until you can’t make
it better (no fringe!)

• New successor function: local changes

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Two Key Advantages

1. They use very little memory — usually a constant
amount

2. They can often find reasonable solutions in large or
infinite (continuous) states spaces for which
systematic algorithms are unsuitable

Two Possible Disadvantages

1. Incomplete

2. Suboptimal

Objective Functions

Local search algorithms are also useful for solving pure
optimization problems

‣ Such problems aim to find the best state according to an
objective function

maximize or minimize Z =
nX

i=1

ciXi

Example:

ci = the objective function coefficient corresponding to
the ith variable, and

Xi = the ith decision variable.

State-Space Landscape

Image Credit: Russel and Norvig

Hill Climbing

Simple, general idea:
‣ Start wherever

‣ Repeat: move to the best neighboring state

‣ If no neighbors better than current, quit

‣ Complete?

‣ Optimal?

What’s bad about this approach?

What’s good about it?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Hill Climbing Quiz

1. Starting from X, where do you end up?

2. Starting from Y, where do you end up?

3. Starting from Z, where do you end up?
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allows before giving up

current ← an initial complete assignment for csp
 for i = 1 to max_steps do

 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp.VARIABLES
 value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var = value in current

return failure

A two-step solution using min-conflicts

Image Credit: Russel and Norvig

Simulated Annealing

Simulated Annealing

Theoretical guarantee:

‣ Stationary distribution:

‣ If T decreased slowly enough will converge to optimal state!

Is this an interesting guarantee?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

 Simulated Annealing

Sounds like magic, but reality is reality:

‣ The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all in a row

‣ People think hard about ridge operators which let you jump
around the space in better ways

Genetic Algorithms

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Genetic Algorithms

Genetic algorithms use a natural selection metaphor

‣Keep best N hypotheses at each step (selection) based
on a fitness function
‣Also have pairwise crossover operators, with optional

mutation to give variety

Possibly the most misunderstood, misapplied (and even
maligned) technique around

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Genetic Algorithms

Image Credit: Russel and Norvig

Example: N-Queens

1. Why does crossover make sense here?

Image Credit: Russel and Norvig

2. When wouldn’t it make sense?

3. What would mutation be?

4. What would a good fitness function be?

Structure

Problem Structure

Extreme case: independent subproblems

‣ Example: Tasmania and mainland do
not interact

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

‣ Worst-case solution cost is O((n/c)(dc)), linear in n
‣ e.g., n = 80, d = 2, c = 20
‣ 280 = 4 billion years at 10 million vertices/sec
‣ (4)(220) = 0.4 seconds at 10 million vertices/sec

Tree Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can
be solved in O(nd2) time

‣Compare to general CSPs, where worst-case time is O(dn)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Tree Structured CSPs

Algorithm for tree-structured CSPs:

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

‣Order: Choose a root variable, order variables so that parents
precede children

Tree Structured CSPs

Remove backward: for i = n : 2, apply RemoveInconsistent(Parent(Xi), Xi)

Assign forward: for i = 1 : n, assign Xi consistently with Parent(Xi)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Tree Structured CSPs

Claim 1: After backward pass, all root-to-leaf edges are consistent

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Proof: Each X→Y was made consistent at one point and Y’s domain
could not have been reduced thereafter (because Y’s children were
processed before Y)

Tree Structured CSPs

Claim 2: If root-to-leaf edges are consistent, forward assignment will
not backtrack

Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Nearly Tree Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c gives runtime O((dc) (n - c) d2), very fast for small c
Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Cutset Conditioning

SA

Choose a cutset

Instantiate the cutset
(all possible ways)

SA SA SA

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

M3 M4M2M1

Tree Decomposition

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Idea: create a tree-structured graph of
mega-variables

Each mega-variable encodes part of the
original CSP

Subproblems overlap to ensure consistent solutions

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

NS
W

SA

¹
Q

¹ ¹

V

SA

¹NS
W

¹ ¹

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree on shared vars

Agree on shared vars

Agree on shared vars

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

