
Adversarial Search: Games, Optimality, and Minimax

CSE 40171:
Artificial Intelligence

�1

�2

Homework #3 has been released
It is due at 11:59PM on 10/9

What is a game?

Game Playing State-of-the-Art

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game match.
Deep Blue examined 200M positions per second,
used very sophisticated evaluation and
undisclosed methods for extending some lines of
search up to 40 ply. Current programs are even
better, if less historic.

Pacman

Go: 2016: AlphaGo, a deep learning-based
system, beat Lee Sedol, a 9-dan professional
without handicaps, in a five game match. The
win was a major milestone in data driven
approaches to game playing.

Behavior from Computation

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Adversarial Games

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Types of Games

Many different kinds of games!

Axes:
‣ Deterministic or stochastic?
‣ One, two, or more players?

‣ Zero sum?
‣ Perfect information (can you see the state)?

Want algorithms for calculating a strategy (policy) which
recommends a move from each state

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Formal Elements of a Game

• S0: the initial state, which specifies how the game is set
up at the start

• PLAYER(s): Defines which player has the move in a state

• ACTIONS(s): Returns the set of legal moves in a state

• RESULT(s, a): the transition model, which defines the
result of a move

Formal Elements of a Game

• TERMINAL-TEST(s): a terminal test, which is true when
the game is over and false otherwise. States where the
game has ended are called terminal states.

• UTILITY(s, p): a utility function (a.k.a. objective or payoff
function) defines the final numeric value for a game that
ends in terminal state s for a player p.

Zero-Sum Games

• Agents have opposite utilities (values on outcomes)

• Lets us think of a single value that one maximizes and the
other minimizes

• Adversarial, pure competition

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

General Games

• Agents have independent utilities (values on outcomes)

• Cooperation, indifference, competition, and more are all
possible

• More later on non-zero-sum games

Two Players

MAX

MIN

‣ Moves first
‣ High values are good for MAX

‣ Moves after MAX
‣ High values are bad for MIN

Game Trees

Image credit: Russell and Norvig

Optimal Decisions in Games

What is different about this compared
to basic search?

Adversarial Search

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Single-Agent Trees

8

2 0 2 6 4 6… …

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

✓

Value of a State

8

2 0 2 6 4 6… …

Value of a state: The best
achievable outcome (utility)

from that state

Non-Terminal States:

Terminal States:

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Minimax Values

+8-10-5-8

Terminal States:

States Under Agent’s Control: States Under Opponent’s Control:

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Adversarial Search (Minimax)

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Minimax search:

‣ A state-space search tree

‣ Players alternate turns

‣ Compute each node’s minimax
value: the best achievable utility
against a rational (optimal)
adversary

Minimax Implementation

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-
value(successor))

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-
value(successor))

return v

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Minimax Example

3 12 8 2 4 6 14 5 2

Minimax Example

Image credit: Russell and Norvig

Minimax Efficiency

How efficient is minimax?
‣ Just like (exhaustive) DFS
‣ Time: O(bm)
‣ Space: O(bm)

Example: For chess, b ≈ 35, m ≈ 100

‣ Exact solution is completely infeasible
‣ But, do we need to explore the whole tree?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Minimax Properties

10 10 9 100

max

min

Optimal against a perfect player. Otherwise?

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188

Minimax Demo

But we have two of these guys —
what do we do?

Multi-player Games

Image credit: Russell and Norvig

Multi-player Games

x

Image credit: Russell and Norvig

Now what if A and B begin to collaborate?

Diplomacy: Game 1 - Round 1 BY-SA 2.0 condredge

Multi-player Games

Minimax: GANs

Image credits: https://devblogs.nvidia.com/photo-editing-generative-adversarial-networks-1/ &
 https://research.nvidia.com/publication/2017-10_Progressive-Growing-of

