
Adversarial Search: Alpha-Beta Pruning; 
Imperfect Decisions

CSE 40171:  
Artificial Intelligence

�32



�33

Homework #3 is due tonight 
at 11:59PM



What limitations does 
minimax have?



�35

? ? ?

-1 -2 4 9

4

min

max

-2 4

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search

‣ Instead, search only to a limited depth in the tree 
‣ Replace terminal utilities with an evaluation function for 

non-terminal positions 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Resource Limits

Example:

‣ Suppose we have 100 seconds and can explore 10K 
nodes / sec 

‣ This means we can check 1M nodes per move 

‣ 𝝰-𝝱 pruning reaches about depth 8 – decent chess 
program  

Guarantee of optimal play is gone

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Depth Matters

Evaluation functions are always 
imperfect  

The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters 

An important example of the 
tradeoff between complexity of 
features and complexity of 
computation 



Game Tree Pruning

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Minimax Example

3 12 8 2 4 6 14 5 2

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Motivating Example

Image credit: Russell and Norvig 



Minimax Pruning

3 12 8 2 14 5 2

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Alpha-Beta Pruning

When applied to a standard minimax tree, it returns the same 
move as minimax would

But always prunes away branches that cannot possibly 
influence the final decision



What are alpha and beta?

𝝰 = the value of the best (i.e., highest-value) choice we have 
found so far at any choice point along the path for MAX.

𝝱 = the value of the best (i.e., lowest-value) choice we have 
found so far at any choice point along the path for MIN.



General Configuration (MIN Version)

MAX

MIN

MAX

MIN

a

n

• We’re computing the MIN-VALUE at 
some node n 

• We’re looping over n’s children 
• n’s estimate of the childrens’ min is 

dropping 
• Who cares about n’s value?  MAX 
• Let a be the best value that MAX 

can get at any choice point along 
the current path from the root 

• If n becomes worse than a, MAX 
will avoid it, so we can stop 
considering n’s other children (it’s 
already bad enough that it won’t be 
played)     

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



General Configuration (MAX Version)

MAX

MIN

MAX

MIN

a

n

The MAX version is 
simply symmetric

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Alpha-Beta Implementation 

α: MAX’s best option on path to root 
β: MIN’s best option on path to root

def max-value(state, α, β): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor, α, β)) 
if v ≥ β return v 
α = max(α, v) 

return v 

def min-value(state, α, β): 
initialize v = +∞ 
for each successor of state: 

v = min(v, value(successor, α, β)) 
if v ≤ α return v 
β = max(β, v) 

return v 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Alpha-Beta Pruning Properties 

10 10 0

max

min

This pruning has no effect on minimax 
value computed for the root! 

Values of intermediate nodes might be 
wrong 
‣ Important: children of the root may have 

the wrong value 
‣ So the most naive version won’t let you 

do action selection  

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Demo: Minimax + Alpha-Beta Pruning

https://www.youtube.com/watch?v=_bEQJKXZ1-U



Alpha-Beta Pruning Properties 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

10 10 0

max

min

Good child ordering improves effectiveness 
of pruning 

With “perfect ordering”: 

‣ Time complexity drops to O(bm/2) 
‣ Doubles solvable depth! 
‣ Full search of, e.g., chess, is still hopeless…  

This is a simple example of metareasoning (computing about 
what to compute) 



Evaluation Functions

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



It turns out that alpha-beta 
pruning isn’t so good…

It must search all the way to terminal 
states for at least a portion of the 
search space

Claude Shannon       BY-NC-SA 2.0 tericee

This is usually not practical, because 
we need to play the game in a 
reasonable amount of time

Shannon’s suggestion: cutoff earlier via 
a heuristic evaluation function



Cutoff Test

H-MINIMAX(s, d) = 

EVAL(S)                                                                          if CUTOFF-TEST(s, d)

maxα∈Actions(s) = H-MINMAX(RESULT(s, α), d + 1)      if PLAYER(s) = MAX

min∈Actions(s) = H-MINMAX(RESULT(s, α), d + 1)        if PLAYER(s) = MIN
{



Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Evaluation Functions

Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features: 

e.g.  f1(s) = (num white queens – num black queens), etc.



Be wary of simple approaches

Heuristic: Material Advantage

Image credit: Russell and Norvig 



Be wary of simple approaches

Probable win 
for black

Image credit: Russell and Norvig 



Be wary of simple approaches

Image credit: Russell and Norvig 


