CSE 40171: Artificial Intelligence

Neural Network Model Search: High Throughput Screening

Homework #4 has been released It is due at 11:59PM on 10/18

Quiz #1 is scheduled for 10/30

Let's turn back to neural networks...

Image credit: LeCun et al. Proc. of the IEEE, Nov. 1998.

Q1: What are the free parameters available in neural network training?

Q2: What are the options for searching that space?

Q3: Is the problem tractable?

Idea: highthroughput screening

Screening Facility Colony Picker 😨 BY-ND 2.0 Wolfgang Hoffmann

How does this work in biology?

- Commonly applied to drug discovery
- Conduct millions of chemical, genetic, or pharmacological tests
- Use robotics, data processing / control software, sensors, fluidics technology
- Screen for most promising compounds
 - Usually retaining just a handful out of millions of trials

High-Throughput Screening for Neural Networks

Pinto et al. PLOS Comp. Bio. 2009.

By analogy to drug discovery:

Step 1. Candidate Model Generation

Instantiate a chosen arch. with random hyperparameters

Image adapted from: Pinto et al. PLOS Comp. Bio. 2009.

Quick Aside: Features in Computer Vision

What is a Convolution? → Image filtering

(b)

Step 2. Unsupervised Training

Supervision is expensive and a limiting factor in high-throughput screening

Learn spatiotemporal statistics from video in unsupervised fashion

Step 3. Screening

Individual static images supplied as input to each model

Vector of responses from the units of its final layer are taken as the model's "representation"

Training on only one pair of classes

A Cars vs. Planes

Step 4. Validation

Best models from screening step are further evaluated against different classes

2,500 Models screened on the "Cars" vs. "Planes" Task

2,500 Models screened on the "Cars" vs. "Planes" Task

С **Synthetic Faces** D 100 90 Percent Correct 80 70 60 50 5 4 3 2 1 blend regular + SIFT GB PHOG PHOW SLF v1-like state-of-the-art top 5 models (control) (from literature) (high-throughput search)

MultiPIE Hybrid

This methodology applied to face recognition

Pinto and Cox IEEE FG 2011.

Neat hack: don't train net, simply use random weights and screen

Same or different?

Why does this work?

Face Recognition Performance

Labeled Faces in the Wild: Huang et al. 2008

Screening on the LFW View 1 "aligned" set

Face Recognition Performance

(4)							
	Kumar et al.	Wolf et al.	Cao et al.				
Reference	ICCV09 [28]	ACCV09 [27]	CVPR10 [29]	This paper			
Mean classification error	14.7%±1.2	13.2%±0.3	15.5%±0.5	11.9%±0.6			

(C) comparison with literature

Random Search

Bergstra and Bengio JMLR 2012.

Observations on Random Search

- Optimal in the limit (why doesn't this help us?)
- Easy to implement
- Probably works because not all parameters are equally important to tune
 - Grid search spends far too much time on unimportant parameters
- In practice, this is your best strategy for hyperparameter optimization and model search (for now)

Computational Efficiency of Random Search

- Experiment can be stopped at any point, but trials form a complete experiment
- If extra computational resources become available, new trials can be added without having to adjust a grid
- Every trial can be carried out asynchronously
- If a computer fails, the entire experiment isn't ruined, just the trial

Hyperopt

\leftarrow \rightarrow \bigcirc GitHub, Inc. [US] | https://github.com/hyperopt/hyperopt

☆ 🦁 🔶 🔾 🤘

Distributed Asynchronous Hyperparameter Optimization in Python http://hyperopt.github.io/hyperopt

🕝 972 commits	🛿 20 branches	\bigcirc 4 releases	245 contributors		গাঁুফ View license			
Branch: master - New pull reque	est			Find File	Clone or download -			
twolodzko and maxpumperla Meaningful exception for all optimization trials failed (#501) Latest commit 762e89f on May 28								
hyperopt	Meaningful exception for	or all optimization trials failed	(#501)		last month			
recipes	adding partial sampling	notebook			6 years ago			
scripts	linting for mongo worke	er script			3 years ago			
.gitignore	init pr (#480)				4 months ago			
.gitmodules	FIX: remove pyll submo	dule			7 years ago			
.travis.yml	init pr (#480)				4 months ago			
LICENSE.txt	ENH: added license file				7 years ago			
README.md	added anaconda badge	(#425)			10 months ago			
RELEASE.txt	added RELEASE.txt not	e about annotated tags			6 years ago			
<pre>distribute_setup.py</pre>	add distribute_setup				6 years ago			
setup.py	fixing max_queue_len fo	or mongotrials (#506)			last month			

Bergstra et al. ICML 2013.

Hyperopt for Search

- Python library that implements random search
- Free and open source
- Available via a quick pip install
- Makes use of distributed hardware

The way to use hyperopt is to describe:

- The objective function to minimize
- The space over which to search
- The database in which to store all point evaluations of the search
- The search algorithm to use

Define an objective function

(meta-level objective)

```
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2
```

Define a search space

Minimize the objective over the space

from hyperopt import fmin, tpe, space_eval best = fmin(objective, space, algo=random.suggest, max_evals=100)

print(best)
-> { 'a': 1, 'c2': 0.01420615366247227 }
print(space_eval(space, best))
-> ('case 2', 0.01420615366247227 }

Search spaces for machine learning classifiers

```
from hyperopt import hp
space = hp.choice('classifier_type', [
    {
        'type': 'naive_bayes',
    },
    {
        'type': 'svm',
        'C': hp.lognormal('svm C', 0, 1),
        'kernel': hp.choice('svm kernel', [
            {'ktype': 'linear'},
            {'ktype': 'RBF', 'width': hp.lognormal('svm rbf width', 0, 1)},
            ]),
    },
    {
        'type': 'dtree',
        'criterion': hp.choice('dtree_criterion', ['gini', 'entropy']),
        'max_depth': hp.choice('dtree_max_depth',
            [None, hp.glognormal('dtree_max_depth_int', 3, 1, 1)]),
        'min samples split': hp.glognormal('dtree min samples split', 2, 1, 1),
    },
    1)
```