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Homework #4 has been released 
It is due at 11:59PM on 10/18
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Quiz #1 is scheduled for 10/30
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Project proposal instructions have been 
released. Proposals are Due 11/4. 

(Let me know if you need a group)
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Q1: What properties would an approach 
that is better than random search have?
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Q2: What are some possible alternatives 
to random search?
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Generic Sequential Model-based Optimization



Tree-Structured Parzen Estimator (TPE)

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}

There is more than one way to search via hyperopt:

http://hyperopt.github.io/hyperopt/



Step 1: Sample reference sets

Assumption: “good” and “bad” hyperparameter sets can be modeled 
by different distributions

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

Bergstra et al. NIPS 2011

Ex. 25% of parameter 
sets go to the “good” 
group after random 
search



Step 2: Kernel Density Estimation 

• Each sample 
defines a Gaussian 
distribution 

• Mean equal to a 
hyperparameter 
value; specified 
standard deviation 

• Distributions are 
stacked together 
and normalized to  
get a valid prob. 
distribution

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/



Step 3: Find candidate with best expected 
improvement 

Sampling Problem: find a hyperparameter combination that more 
likely belongs to a “good” group and less likely to “bad” group. 

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/



How effective is TPE?

Algorithms were allowed up to 200 trials. The manual searches 
used 82 trials for convex and 27 trials MRBI.

Bergstra et al. NIPS 2011

Boston Housing Price Problem  
(http://dkopczyk.quantee.co.uk/hyperparameter-optimization/)

TPE

Random



Pros of TPE

+ Conceptually Simple 

+ Implementations in multiple Python packages  
‣  hyperopt, optunity 

+ At least as effective as random search in some settings 



Cons of TPE

- Limited by the structure learned from data 

- It is possible for TPE to be arbitrarily bad with a bad choice   
  of P(y | x)  

- Possible to be slower than random sampling at finding a 
  global optimum with an apparently good P(y | x) 

- Realistically, will only find a local optimum



Gaussian Process (GP)
Bergstra et al. NIPS 2011

Regressions sine demo       BY-SA 4.0 Shiyu Ji

Long recognized as a good method for modeling loss functions in 
model-based optimization literature



How effective is GP?

Algorithms were allowed up to 200 trials. The manual searches 
used 82 trials for convex and 27 trials MRBI.

Bergstra et al. NIPS 2011

Boston Housing Price Problem 
Red = GP, Blue = Random. Shaded areas = 
one-sigma error bars



Pros and cons of GP
+ Priors over functions that are closed under sampling 

+ Provide an assessment of prediction uncertainty 
   incorporating the effect of data scarcity 

+ At least as effective as random search in some settings 

- Has its own hyperparameters, which must be tuned 

- Limited by the structure learned from data 

- Realistically, will only find a local optimum 

- Empirically worse than TPE



More on Bayesian Optimization

Let’s revisit the idea of Gaussian Process…

Snoek et al. NIPS 2012
‣  A learning algorithm’s generalization performance is 

modeled as a sample from a GP 
‣  Type of kernel and the treatment of its hyperparameters, 

can play a crucial role in obtaining a good optimizer

But need to factor in variable cost



Thinking about this problem from a 
systems perspective

Machine learning problems are different from other 
black-box optimization problems

‣ each function evaluation can require a variable amount of time

Machine learning experiments 
are often run in parallel, on 
multiple cores or machines.

Problem: in both cases the standard sequential approach of GP 
optimization can be suboptimal

Cloud computing      BY 2.0 Jane Boyko



Integrated acquisition function

Depends on the parameters and all of the observations

Image Credit: Snoek et al. NIPS 2012



Monte Carlo acquisition for 
parallelizing Bayesian optimization

Compute Monte Carlo estimates of the acquisition function under 
different possible results from pending function evaluations.

Scenario: N evaluations have completed, yielding data                 , and 
in which J evaluations are pending at locations

Choose a new point based on the expected acquisition function under all 
possible outcomes of these pending evaluations:

{xj}Jj=1
<latexit sha1_base64="6bF4/fKa2k/RVcUErrQMTGnhqaE=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWkCroRim7EVQX7gCaGyXTSTjuZhJmJWELc+CtuXCji1r9w5984abvQ1gMXDufcy733+DGjUlnWt1FYWFxaXimultbWNza3zO2dpowSgUkDRywSbR9JwignDUUVI+1YEBT6jLT84WXut+6JkDTit2oUEzdEPU4DipHSkmfuOakTItX3g/Qh8wZOdnftpYNzO/PMslWxxoDzxJ6SMpii7plfTjfCSUi4wgxJ2bGtWLkpEopiRrKSk0gSIzxEPdLRlKOQSDcdf5DBQ610YRAJXVzBsfp7IkWhlKPQ1535tXLWy8X/vE6igjM3pTxOFOF4sihIGFQRzOOAXSoIVmykCcKC6lsh7iOBsNKhlXQI9uzL86RZrdjHlerNSbl2MY2jCPbBATgCNjgFNXAF6qABMHgEz+AVvBlPxovxbnxMWgvGdGYX/IHx+QPqe5ct</latexit>

{xn, yn}Nn=1
<latexit sha1_base64="t4Czf/eGHlODcvMZUdoNbcYNnaY=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFcSEmqoBuh6MaVVLAPaGqYTCft0MkkzEzEELJy46+4caGIW7/BnX/jpM1CWw9cOJxzL/fe40WMSmVZ38bc/MLi0nJppby6tr6xaW5tt2QYC0yaOGSh6HhIEkY5aSqqGOlEgqDAY6TtjS5zv31PhKQhv1VJRHoBGnDqU4yUllxzz0mdAKmh56cPmcuPYOJyJ7u7dlN+bmeuWbGq1hhwltgFqYACDdf8cvohjgPCFWZIyq5tRaqXIqEoZiQrO7EkEcIjNCBdTTkKiOyl4zcyeKCVPvRDoYsrOFZ/T6QokDIJPN2ZnyynvVz8z+vGyj/rpZRHsSIcTxb5MYMqhHkmsE8FwYolmiAsqL4V4iESCCudXFmHYE+/PEtatap9XK3dnFTqF0UcJbAL9sEhsMEpqIMr0ABNgMEjeAav4M14Ml6Md+Nj0jpnFDM74A+Mzx9IA5j9</latexit>



Monte Carlo acquisition for 
parallelizing Bayesian optimization

Image Credit: Snoek et al. NIPS 2012



Logistic regression on MNIST

Image Credit: Snoek et al. NIPS 2012



CNN validation error on CFAR-10

Image Credit: Snoek et al. NIPS 2012



Spearmint



Optunity

https://github.com/claesenm/optunity.git

pip install optunity



Particle Swarm Optimization

Particle Swarm Arrows Animation       BY-SA 4.0 Ephramac

Position of a particle represents a set of hyperparameters 
Movement is influenced by the goodness of the objective function value



Nelder-Mead Simplex

• Nonlinear 
optimization 
method based on 
the concept of a 
simplex 

• Good local search 
method, but will 
get stuck in bad 
regions when a 
poor starting point 
is specified

Nelder-Mead Himmelblau      BY 4.0 Nicoguaro



Covariance Matrix Adaptation Evolutionary 
Strategy

• Evolutionary strategy 
for continuous 
function optimization 

• Dynamically adapt 
search resolution per 
hyperparameter, 
allowing for efficient 
searches at different 
scales



Sobol Sequences

Sobol sequences are designed to cover the unit hypercube with lower 
discrepancy than completely random sampling

Plots generated via optunity: https://optunity.readthedocs.io



Gradient-based Optimization

1. Entire training run with SGD to optimize weights 
2. Compute gradients of validation loss with respect to 

hyperparameters via backprop. 
3. Update hyperparameters in the direction of this hypergradient

Maclaurin et al. ICML 2015



Opens up a “garden of delights”…

• Efficient optimization of thousands of parameters 

• Finer-grained hyperparameter optimization, e.g., 
per layer optimization in a neural network 

• Flexibility over: 
- Model classes 

- Regularization 

- Training Methods



Optimization over training error (MNIST)

Image Credit: Maclaurin et al. ICML 2015



Limitations

• Learning long-term 
dependencies with 
gradient descent is difficult 

- Large learning rates induce 
chaotic behavior in the 
learning dynamics 

• Overfitting 

• Discrete parameters still 
need to be optimized by 
hand

Image Credit: Maclaurin et al. ICML 2015


