CS

- 40171

Artificial Intelligence

Neural Network Model Search: Hyperparameter
Optimization Strategies

28

Homework #4 has been released
't is due at 11:59PM on 10/18

Quiz #1 is scheduled for 10/30

Project proposal instructions have been
released. Proposals are Due 11/4.

(Let me know if you need a group)

31

Q1: What properties would an approach
that is better than random search have?

32

Q2: What are some possible alternatives
to random search?

33

Generic Sequential Model-based Optimization

SMBO(f, My, T, S)
1 H <+ 0,

Fort <+ 1to T,
r* < argmin, S(x, Mi_1),
Evaluate f(z*), > Expensive step
H <« HU(z*, f(z*)),
Fit a new model M, to H.

return H

~N N D W N

Tree-Structured Parzen Estimator (TPE)

There is more than one way to search via hyperopit:

define an objective function
(args):
case, val = args
case == 'case 1':
val

val **

define a search space
hp
space = hp.choice('a’,
[
('case 1', + hp.lognormal('cl
('case 2', hp.uniform('c2', -

1)

minimize the objective over the space
fmin, tpe, space eval
best = fmin(objective, space, algo=tpe.suggest, max evals=

(best)

-> {'a's: 1, 'c2': 0.01420615366247227}
(space eval(space, best))
=> ('case 2', 0.01420615366247227}

http://hyperopt.github.io/hyperopt/

Step 1: Sample reference sets

Bergstra et al. NIPS 2011

Assumption: “good” and “bad” hyperparameter sets can be modeled

by different distributions

m good group
® badgroup

Hyperparameter

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

Ex. 25% of parameter
sets go to the “good”
group after random
search

Step 2: Kernel Density Estimation

e Fach sample
defines a Gaussian
distribution

e Mean equal to a
hyperparameter
value; specified
standard deviation

e Distributions are
stacked together
and normalized to
get a valid prob.
distribution

1.0 A

0.8

0.6

0.4

0.2

0.0 {=——

1.0 A

0.8

0.6

0.4

0.2

0.0

Parzen estimator, 1 peak, std=0.5

Parzen estimator, 2 peaks , std=0.5
1 2 3 4 5 6
Parzen estimator, 3 peaks , std=0.5
1 2 3 4 5 6
Parzen estimator, 4 peaks , std=0.5
1 2 3 4 5 6
Hyperparameter

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

Step 3: Find candidate with best expected
improvement

Sampling Problem: find a hyperparameter combination that more
likely belongs to a “good” group and less likely to “bad” group.

1.0 m prob of being in good group

ing i 11
0.8 - m prob of being in bad group n,

0.6
0.4
0.2] Homyy

0.0 n
45 - —— Expected Improvement Best El

4.0 A

3.5 A

3.0

2.5 4

2 .0 T T T T T T
1 2 3 4 5 6
Hyperparameter

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

How effective is TPE?

Bergstra et al. NIPS 2011

convex MRBI
TPE 14.13 +-0.30 % 44.55 +0.44%
GP 16.70 £0.32% 47.08 4= 0.44%

Manual 18.63 £0.34% 47.39 & 0.44%
Random 18.974+0.34 % 50.52 £ 0.44%

Algorithms were allowed up to 200 trials. The manual searches
used 82 trials for convex and 27 trials MRBI.

Boston Housing Price Problem
(http://dkopczyk.quantee.co.uk/hyperparameter-optimization/)

TIME (minutes) BEST CV SCORE (%) TEST SCORE (%)

Random 3.8 86.10 89.58

TIME (minutes) BEST CV SCORE (%) TEST SCORE (%)

TPE
4.5 86.37 90.42

Pros of TPE

+ Conceptually Simple

+ Implementations in multiple Python packages
» hyperopt, optunity

+ At least as effective as random search in some settings

Cons of TPE

- Limited by the structure learned from data

- It is possible for TPE to be arbitrarily bad with a bad choice
of P(y | x)

- Possible to be slower than random sampling at finding a
global optimum with an apparently good P(y | x)

- Realistically, will only find a local optimum

Gaussian Process (GP)

Bergstra et al. NIPS 2011

Long recognized as a good method for modeling loss functions in
model-based optimization literature

GPR v.s. Kernel Ridge v.s. SVR

— Truye

== SVR (kernel=rbf, C=1, gamma=1)

KRR ({'alpha': 0.01, 'kernel': ExpSineSquared(length_scale=1.67, periodicity=12.9)})
GPR (ExpSineSquared(length_scale=1.73, periodicity=6.16) + WhiteKernel(noise_level=0.564))
@® Data

target

([
—2 - ° °
_3 T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
data
Regressions sine demo) BY-SA 4.0 Shiyu Ji

20.0

Best value so far

How effective i1Is GP?

Bergstra et al. NIPS 2011

convex MRBI
TPE 14.13 +-0.30 % 44.55 +0.44%
GP 16.70 =2 0.32% 47.08 £+ 0.44%

Manual 18.63 £0.34% 47.39 & 0.44%
Random 18.974+0.34 % 50.52 £ 0.44%

Algorithms were allowed up to 200 trials. The manual searches
used 82 trials for convex and 27 trials MRBI.

Boston Housing Price Problem

Red = GP, Blue = Random. Shaded areas =
one-sigma error bars

Pros and cons of GP

+ Priors over functions that are closed under sampling

+ Provide an assessment of prediction uncertainty
incorporating the effect of data scarcity

+ At least as effective as random search in some settings

- Has its own hyperparameters, which must be tuned
- Limited by the structure learned from data
- Realistically, will only find a local optimum

- Empirically worse than TPE

More on Bayesian Optimization

| et’s revisit the idea of Gaussian Process...

Snoek et al. NIPS 2012

» A learning algorithm’s generalization performance is
modeled as a sample from a GP

» Type of kernel and the treatment of its hyperparameters,
can play a crucial role in obtaining a good optimizer

But need to factor in variable cost

Thinking about this problem from a
systems perspective

Machine learning problems are different from other
black-box optimization problems

» each function evaluation can require a variable amount of time

Machine learning experiments
are often run in parallel, on
multiple cores or machines.

Cloud computing € BY 2.0 Jane Boyko

Problem: in both cases the standard sequential approach of GP
optimization can be suboptimal

Integrated acquisition function

&(X3 {men}) — /CL(X; {men}ae)p(0|{men}rjyzl)dea

/

Depends on the parameters and all of the observations

SN A

(@) Posterior samples under varying hyperparameters (b) Expected improvement under varying hyperparameters

O\

() Integrated expected improvement

Image Credit: Snoek et al. NIPS 2012

Monte Carlo acquisition for
parallelizing Bayesian optimization

Compute Monte Carlo estimates of the acquisition function under
different possible results from pending function evaluations.

Scenario: N evaluations have completed, yielding data {x,,,y,}"_,, and
in which J evaluations are pending at locations {x;};_,

Choose a new point based on the expected acquisition function under all
possible outcomes of these pending evaluations:

&(X; {xm yn}7 97 {Xj}) —

\/RJ CL(X; {Xn7 yn}7 07 {Xj7 yj})p({yj :7']:1 | {Xj};]:b {Xn7 yn}ﬁ;l) dyl T dy.]

Monte Carlo acquisition for
parallelizing Bayesian optimization

NCNNs N

(@) Posterior samples after three data (b) Expected improvement under three fantasies

NS

(c) Expected improvement across fantasies

Image Credit: Snoek et al. NIPS 2012

Logistic regression on MNIST

Min Function Value

0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08

— GP EIMCMC
— GP EI Opt
GP El per Sec

— Tree Parzen Algorithm

40 60 80
Function Evaluations

100

Min Function Value

©
n

o
—_
(o]

o
—
»

o
—
N

o
—
N

©
—

0.08

T

1

—— GP EI MCMC
GP El per Second

10

15

20

25
Minutes

30 35 40 45

Image Credit: Snoek et al. NIPS 2012

Min Function Value

CNN validation error on CFA

ship dog deer bird ship cat dog dog

SETAODOESE

R-10

—— GP EIMCMC

— GP EI Opt

——— GP El per Second
—— GP EI MCMC 3x Parallel

0.4 i 04r
—— GP EI MCMC
—— GP EIl Opt
0.35¢ ——— GP El per Second 035+
—— GP EI MCMC 3x Parallel Q
Human Expert]
0.3r S 03f
©
C
\ 2
025- 1., < 025
i
0.2r : 0.2
0 10 20 30 40 50 0 10 20

Function evaluations

30 40 50 60 70
Time (Hours)

Image Credit: Snoek et al. NIPS 2012

Spearmint

& GitHub, Inc. [US] \ https://github.com/HIPS/Spearmint

Spearmint Bayesian optimization codebase

D 97 commits ¥ 3 branches © 0 releases 42 11 contributors sfs View license

Branch: master v New pull request Find File Clone or download v

mgelbart Merge pull request #121 from jjerphan/patch-1 - Latest commit 990d27d on Apr 2
@ examples removed non-default grid size from config file of noisy function, add... 5 years ago
[spearmint solved issue #32: Simple Case of 1 Optimization Variable 3 years ago
[.gitignore initial commit 5 years ago
E) CONTRIBUTING.rst Update CONTRIBUTING.rst 5 years ago
E) LICENSE.md Update LICENSE.md 5 years ago
E) README.md Fix README.md format 3 months ago
E) contributors.md Update contributors.md 4 years ago
B setup.py Fixed a couple of issues 5 years ago

README.md

Spearmint

Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run
experiments (thus the code name spearmint) in a manner that iteratively adjusts a number of parameters so as to
minimize some objective in as few runs as possible.

* 9 ¢ 0 @

Optunity

LXPTUAITY

https://github.com/claesenm/optunity.git
pip install optunity

Particle Swarm Optimization

Position of a particle represents a set of hyperparameters

Movement is influenced by the goodness of the objective function value

Nelder-Mead Simplex

e Nonlinear
optimization
method based on
the concept of a
simplex

e (Good local search
method, but will
get stuck in bad
regions when a
poor starting point
IS specified

|

Nelder-Mead Himmelblau € BY 4.0 Nicoguaro

Covariance Matrix Adaptation Evolutionary
Strategy

Generation 1 Generation 2 Generation 3

. |

Generation 4

e Evolutionary strategy
for continuous
function optimization

e Dynamically adapt
search resolution per
hyperparameter,
allowing for efficient
searches at different
scales

Sobol Sequences

Sobol sequences are designed to cover the unit hypercube with lower
discrepancy than completely random sampling

Uniform random samples
T T w

1.0 - T v
P e .o e °e
° e ® ° o .,
L] e o ® e °]
® o ° eo® .:o °
0.8 - ° °e ° L] ®
% ° e o ° °
[} ° o © °
° ° e o° ~‘
L °
| ® ® ® °
0.6 ey ° N ®e o o ° o °
° ° ° [e o
[} ° had L [] °® [] ‘
L o0 ° b 2
0.4} ° ° ° R
.o : e ¢ o @ ° ece & o °
)
[) ’. ° ' ¢
e © °® e * °
0.2+ e, o... . ® o R . |
° ° e 9
) ° ® °
b e ° . ° °
>° ° : % o °
00 t 1 d 1 et 1 ;o e |
0.0 0.2 0.4 0.6 0.8 1.0

Plots generated via optunity: https://optunity.readthedocs.io

Sobol sequence
T T w

1.0 — , - :
. . : D o ° °
% ® ° ° ° * ¢
° ° o ® e *° o
° ° ° ° ®
0.8} . . . * o ° o
e © . ° °
° ° ° ®
3 ° ° ® %
o ° o. ® o ¢ o ° °
[] ° Y °
0.6] o o o °, . : N
[] : o o ° ° ° % °
° e ° b ° °
° ° [] [])
[Y []
° ° ° ® o ® o
0.4} o [} o ° ° -
e ® o °*° e .
[. ° o ° ° [] [
b % ° ° N ¢ L
° ° ° ° g ® o °
02l e o o o . ° . . 1
. A o ° ° ° °
°
3 ° : °) ® °
° ° e ® o ° o
0.0 ,® a . a o o 2 %
0.0 0.2 0.4 0.6 0.8 1.0

Gradient-based Optimization

Maclaurin et al. ICML 2015

Initial weights

Meta-iteration 1
Meta-iteration 2
Meta-iteration 3

Training loss

—k

Entire training run with SGD to optimize weights

2. Compute gradients of validation loss with respect to
hyperparameters via backprop.

3. Update hyperparameters in the direction of this hypergradient

Opens up a “garden of delights”...

e Efficient optimization of thousands of parameters

* Finer-grained hyperparameter optimization, e.g.,
per layer optimization in a neural network

* Flexibility over:
- Model classes
- Regqularization

- Training Methods

Optimization over training error (MNIST)

Optimized learning rate schedule

7 I I I |
6l —o— Layer 1 |
3 sl —o— Layer 2 |
£ —e— Layer 3
o 4
= —o— Layer 4
g 3
=
@ 2
1
O ! | | |
0 20 40 60 80 100
Schedule index
Elementary learning curves Meta-learning curve
2.5 T T T ! T I ' T
— Initial hypers 0 0.5 —e— Training loss
" 2.0 Final hypers S04
2] o
2 =
o 12 = 0.3
g '©
£ 1.0 E 0.2
= =
0.5 i 0.1
OO I I | I OO | | | |
0 20 40 60 80 100 0 10 20 30 40 50
Training iteration Meta iteration

Image Credit: Maclaurin et al. ICML 2015

Limitations

e Learning long-term
dependencies with
gradient descent is difficult

Training loss

o

- Large learning rates induce

chaotic behavior in the
learning dynamics 5 .
5
e Qverfitting l |
1.0 1.5 2.0
Log learning rate
® Dlscrete parameters Stl” Image Credit: Maclaurin et al. ICML 2015

need to be optimized by
hand

