
Neural Network Model Search: Hyperparameter
Optimization Strategies

CSE 40171:
Artificial Intelligence

�28

�29

Homework #4 has been released
It is due at 11:59PM on 10/18

�30

Quiz #1 is scheduled for 10/30

�31

Project proposal instructions have been
released. Proposals are Due 11/4.

(Let me know if you need a group)

�32

Q1: What properties would an approach
that is better than random search have?

�33

Q2: What are some possible alternatives
to random search?

�34

Generic Sequential Model-based Optimization

Tree-Structured Parzen Estimator (TPE)

define an objective function
def objective(args):
 case, val = args
 if case == 'case 1':
 return val
 else:
 return val ** 2

define a search space
from hyperopt import hp
space = hp.choice('a',
 [
 ('case 1', 1 + hp.lognormal('c1', 0, 1)),
 ('case 2', hp.uniform('c2', -10, 10))
])

minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
-> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
-> ('case 2', 0.01420615366247227}

There is more than one way to search via hyperopt:

http://hyperopt.github.io/hyperopt/

Step 1: Sample reference sets

Assumption: “good” and “bad” hyperparameter sets can be modeled
by different distributions

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

Bergstra et al. NIPS 2011

Ex. 25% of parameter
sets go to the “good”
group after random
search

Step 2: Kernel Density Estimation

• Each sample
defines a Gaussian
distribution

• Mean equal to a
hyperparameter
value; specified
standard deviation

• Distributions are
stacked together
and normalized to
get a valid prob.
distribution

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

Step 3: Find candidate with best expected
improvement

Sampling Problem: find a hyperparameter combination that more
likely belongs to a “good” group and less likely to “bad” group.

Image Credit: http://dkopczyk.quantee.co.uk/hyperparameter-optimization/

How effective is TPE?

Algorithms were allowed up to 200 trials. The manual searches
used 82 trials for convex and 27 trials MRBI.

Bergstra et al. NIPS 2011

Boston Housing Price Problem
(http://dkopczyk.quantee.co.uk/hyperparameter-optimization/)

TPE

Random

Pros of TPE

+ Conceptually Simple

+ Implementations in multiple Python packages
‣ hyperopt, optunity

+ At least as effective as random search in some settings

Cons of TPE

- Limited by the structure learned from data

- It is possible for TPE to be arbitrarily bad with a bad choice
 of P(y | x)

- Possible to be slower than random sampling at finding a
 global optimum with an apparently good P(y | x)

- Realistically, will only find a local optimum

Gaussian Process (GP)
Bergstra et al. NIPS 2011

Regressions sine demo BY-SA 4.0 Shiyu Ji

Long recognized as a good method for modeling loss functions in
model-based optimization literature

How effective is GP?

Algorithms were allowed up to 200 trials. The manual searches
used 82 trials for convex and 27 trials MRBI.

Bergstra et al. NIPS 2011

Boston Housing Price Problem
Red = GP, Blue = Random. Shaded areas =
one-sigma error bars

Pros and cons of GP
+ Priors over functions that are closed under sampling

+ Provide an assessment of prediction uncertainty
 incorporating the effect of data scarcity

+ At least as effective as random search in some settings

- Has its own hyperparameters, which must be tuned

- Limited by the structure learned from data

- Realistically, will only find a local optimum

- Empirically worse than TPE

More on Bayesian Optimization

Let’s revisit the idea of Gaussian Process…

Snoek et al. NIPS 2012
‣ A learning algorithm’s generalization performance is

modeled as a sample from a GP
‣ Type of kernel and the treatment of its hyperparameters,

can play a crucial role in obtaining a good optimizer

But need to factor in variable cost

Thinking about this problem from a
systems perspective

Machine learning problems are different from other
black-box optimization problems

‣ each function evaluation can require a variable amount of time

Machine learning experiments
are often run in parallel, on
multiple cores or machines.

Problem: in both cases the standard sequential approach of GP
optimization can be suboptimal

Cloud computing BY 2.0 Jane Boyko

Integrated acquisition function

Depends on the parameters and all of the observations

Image Credit: Snoek et al. NIPS 2012

Monte Carlo acquisition for
parallelizing Bayesian optimization

Compute Monte Carlo estimates of the acquisition function under
different possible results from pending function evaluations.

Scenario: N evaluations have completed, yielding data , and
in which J evaluations are pending at locations

Choose a new point based on the expected acquisition function under all
possible outcomes of these pending evaluations:

{xj}Jj=1
<latexit sha1_base64="6bF4/fKa2k/RVcUErrQMTGnhqaE=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWkCroRim7EVQX7gCaGyXTSTjuZhJmJWELc+CtuXCji1r9w5984abvQ1gMXDufcy733+DGjUlnWt1FYWFxaXimultbWNza3zO2dpowSgUkDRywSbR9JwignDUUVI+1YEBT6jLT84WXut+6JkDTit2oUEzdEPU4DipHSkmfuOakTItX3g/Qh8wZOdnftpYNzO/PMslWxxoDzxJ6SMpii7plfTjfCSUi4wgxJ2bGtWLkpEopiRrKSk0gSIzxEPdLRlKOQSDcdf5DBQ610YRAJXVzBsfp7IkWhlKPQ1535tXLWy8X/vE6igjM3pTxOFOF4sihIGFQRzOOAXSoIVmykCcKC6lsh7iOBsNKhlXQI9uzL86RZrdjHlerNSbl2MY2jCPbBATgCNjgFNXAF6qABMHgEz+AVvBlPxovxbnxMWgvGdGYX/IHx+QPqe5ct</latexit>

{xn, yn}Nn=1
<latexit sha1_base64="t4Czf/eGHlODcvMZUdoNbcYNnaY=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFcSEmqoBuh6MaVVLAPaGqYTCft0MkkzEzEELJy46+4caGIW7/BnX/jpM1CWw9cOJxzL/fe40WMSmVZ38bc/MLi0nJppby6tr6xaW5tt2QYC0yaOGSh6HhIEkY5aSqqGOlEgqDAY6TtjS5zv31PhKQhv1VJRHoBGnDqU4yUllxzz0mdAKmh56cPmcuPYOJyJ7u7dlN+bmeuWbGq1hhwltgFqYACDdf8cvohjgPCFWZIyq5tRaqXIqEoZiQrO7EkEcIjNCBdTTkKiOyl4zcyeKCVPvRDoYsrOFZ/T6QokDIJPN2ZnyynvVz8z+vGyj/rpZRHsSIcTxb5MYMqhHkmsE8FwYolmiAsqL4V4iESCCudXFmHYE+/PEtatap9XK3dnFTqF0UcJbAL9sEhsMEpqIMr0ABNgMEjeAav4M14Ml6Md+Nj0jpnFDM74A+Mzx9IA5j9</latexit>

Monte Carlo acquisition for
parallelizing Bayesian optimization

Image Credit: Snoek et al. NIPS 2012

Logistic regression on MNIST

Image Credit: Snoek et al. NIPS 2012

CNN validation error on CFAR-10

Image Credit: Snoek et al. NIPS 2012

Spearmint

Optunity

https://github.com/claesenm/optunity.git

pip install optunity

Particle Swarm Optimization

Particle Swarm Arrows Animation BY-SA 4.0 Ephramac

Position of a particle represents a set of hyperparameters
Movement is influenced by the goodness of the objective function value

Nelder-Mead Simplex

• Nonlinear
optimization
method based on
the concept of a
simplex

• Good local search
method, but will
get stuck in bad
regions when a
poor starting point
is specified

Nelder-Mead Himmelblau BY 4.0 Nicoguaro

Covariance Matrix Adaptation Evolutionary
Strategy

• Evolutionary strategy
for continuous
function optimization

• Dynamically adapt
search resolution per
hyperparameter,
allowing for efficient
searches at different
scales

Sobol Sequences

Sobol sequences are designed to cover the unit hypercube with lower
discrepancy than completely random sampling

Plots generated via optunity: https://optunity.readthedocs.io

Gradient-based Optimization

1. Entire training run with SGD to optimize weights
2. Compute gradients of validation loss with respect to

hyperparameters via backprop.
3. Update hyperparameters in the direction of this hypergradient

Maclaurin et al. ICML 2015

Opens up a “garden of delights”…

• Efficient optimization of thousands of parameters

• Finer-grained hyperparameter optimization, e.g.,
per layer optimization in a neural network

• Flexibility over:
- Model classes

- Regularization

- Training Methods

Optimization over training error (MNIST)

Image Credit: Maclaurin et al. ICML 2015

Limitations

• Learning long-term
dependencies with
gradient descent is difficult

- Large learning rates induce
chaotic behavior in the
learning dynamics

• Overfitting

• Discrete parameters still
need to be optimized by
hand

Image Credit: Maclaurin et al. ICML 2015

