CSE 40171:
Artificial Intelligence

Artificial Neural Networks with Anatomical Fidelity:
Recurrence in Artiticial and Biological Networks
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Homework #6 has been released
It Is due at 11:59PM on 11/22




Project Updates are Due on 11/25 at
11:59PM

(See Course Website for Instructions)
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Let’'s turn our attention back to
artificial neural networks for a
moment. ..




How do we parse audio data”
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LEASE READ HE OLLOWING:
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gy Passport.

> »l o) 0:49/053

https://www.youtube.com/watch?v=-z\VgWpVXb64
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How about text?

Arms, and the man I sing, who, forc'd by fate,
And haughty Juno's unrelenting hate,
Expell'd and exil'd, left the Trojan shore.
Long labors, both by sea and land, he bore,
And in the doubtful war, before he won

The Latian realm, and built the destin'd town;
His banish'd gods restor'd to rites divine,

And settled sure succession in his line,

From whence the race of Alban fathers come,
And the long glories of majestic Rome.

O Muse! the causes and the crimes relate;
What goddess was provok'd, and whence her hate;
For what offense the Queen of Heav'n began
To persecute so brave, so just a man;

Involv'd his anxious life in endless cares,

Expos'd to wants, and hurried into wars!
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Recurrent Networks

output layer

Network €@ BY-SA 3.0 Chrislb



Architecture of a Traditional RNN
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Image Credit: Afshine Amidi and Shervine Amidi Stanford CS 230



At each timestep ¢
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Example Application: Music
Generation
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Example Application: Named
Entity Recognition
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Training a Recurrent Net
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Advantages of RNNs

Ability to process time series data of any length
Model size does not increase with input size
Takes into account history when processing

Weights are shared across time



Disadvantages of RNNs

o Computation is slow

* Difficulty accessing information from many
timesteps in the past

e Current state cannot consider any input from the
future



Vanishing / Exploding Gradient

For many years, RNNs were interesting
theoretically, but not practical to train

Reason: it is difficult to capture long term
dependencies because of a multiplicative gradient
that can be exponentially increasing / decreasing
with respect to the number of layers in the network

Credit: Afshine Amidi and Shervine Amidi Stanford CS 230



Image Cre

RNN Strategy 1: Gradient Clipping

Cap the maximum value of the gradient:
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BNN Strategy 2: Types of Gates

Specific gates that have a well-defined purpose can
address the vanishing gradient problem.

Sigmoid Function

General Form: |I' = a’(Wa:<t> t'Ua<t_1>/+,b)
N

Gate-Specific Coefficients

Type of gate Role
Update gate I',, How much past should matter now?
Relevance gate I, Drop previous information?
Forget gate I'; Erase a cell or not?
Output gate I'’, How much to reveal of a cell?

Image Credit: Afshine Amidi and Shervine Amidi Stanford CS 230



Standard Arch.

Characterization
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Image Credit: Afshine Amidi and Shervine Amidi Stanford CS 230
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Recurrent Models of Brain Function



Two models of recurrence

Linear recurrent model:

d
Trd—Z:—V—I—F(h—I—M-V)

Non-linear recurrent model:

Fh4+M-r)=h+M-r—7~];

/

Adds rectification



Tuning Curves

STIMULUS RESPONSE TUNING CURVE

Stimulus Stimulus Stimulus
of on off

~ A

Cell's response

=% 1 £

Orientation of bar

RGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Hubel and Wiesel 1968



Linear Amplification
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Non-Linear Amplification
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Recurrent Model of Simple Cells in
Primary Visual Cortex

"




Recurrent Model of Simple Cells in
Primary Visual Cortex

Ben-Yishai, Bar-Or and Sompolinsky 2005
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Recurrent Model of Simple Cells in
Primary Visual Cortex
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A Recurrent Model of Complex
Cells in Primary Visual Cortex




A Recurrent Model of Complex
Cells in Primary Visual Cortex

Chance, Nelson and Abbott 1999

Weight Function:
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control recurrence

Firing Rates Determined By:
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A Recurrent Model of Complex
Cells in Primary Visual Cortex
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