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Artificial Intelligence

Artificial Neural Networks with Functional Fidelity:

Models of Neural Network Dynamics
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Homework #7 has been released
It Is due at 11:59PM on 12/2




Project Updates are Due tonight at
11:59PM

(See Course Website for Instructions)
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Molecular Mechanisms

Cell

Extracellular Intracellular
Charge Separation + == Across Membrane

lon Concentration Gradients

"’ — <
el -

Basis of Membrane Potential2 €) BY-SA 3.0 Synaptidude



Action
potential
+40

Voltage (mV)

_55 |Threshold

é initiations
-70

Resting state
StimulusT

Jonezielod

Refractory

2 3

Time (ms)

Action potential ) BY-SA 3.0 Chris 73



Spike Trains

Action potentials convey information through their timing:
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Rossant et al. Front. Neurosci. 2011



—iring Rates Approximated by
Different Procedures
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Reminder of Tuning Curves

STIMULUS RESPONSE TUNING CURVE

Stimulus Stimulus Stimulus
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RGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Hubel and Wiesel 1968



Modeling a Tuning Curve

Gaussian Tuning Curve:

orientation evoking max. response

max. avg. response rate \ 5
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orientation angle of light bar determines width of tuning curve



Modeling a Tuning Curve
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Note: Spike Count Variability

e Juning curves allows us to predict the average
firing rate

* They do not describe how the spike-count firing
rate r varies about its mean value from trial to trial

» likely that single-trial responses can only be
modeled probabillistically



Describing the stimulus

Neurons responding to stimuli must encode parameters
that can vary over a large dynamic range.

Weber’s law: how different two stimuli have to be to be
reliably discriminated. The just noticeable difference As

IS proportional to the magnitude of the stimulus s, such
that As /s Is constant.

Fechner’s law: noticeable differences set the scale for
perceived stimulus intensities. Integrating Weber's law, the
perceived intensity of a stimulus of absolute intensity s varies
as log s.



Adapting to the stimulus

Sensory systems make numerous adaptations to adjust to the
average level of stimulus intensity.

Model this by describing responses to fluctuations about a
mean stimulus level.

s(7) is defined so that its time average over the duration of the
trial is 0:

/OTdt s(t)/T =0



Stimuli and Time Averages
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Computing the spike-triggered
average stimulus

"  .va i V spike-triggered average

il Dayan and Abbott 2001



What does incorporating these dynamics into
an artificial neural network provide us with”



Spiking Artificial Neural Networks
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Advantage of Spiking Artificial
Neural Nets

 Neuroscientists believe that information is encoded
and decoded by a spike train

» Do neurons communicate with a rate or temporal code”

 Temporal coding suggests that a single spiking neuron
could replace hundreds of hidden units in a conventional

artificial neural network



The Neural Code
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Spiking neural networks consider
temporal information

* Not all neurons are activated in every iteration of
propagation

A neuron is activated when its "membrane
potential” reaches a threshold

* After activation, a signal is produced that is sent to
connected neurons, raising or lowering their
membrane potential



Unit in a Spiking Artificial Neural
Network
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Neuromorphic Architectures




Key advantages of neuromorphic
hardware

* Energy efficiency
* Execution speed
e Tolerance to local failures

e Ability to learn



Neurogrid (Stanford)

Image Credit: Brains in Silicon Group, Stanford University

Analog computation to emulate ion
channel activity

Digital communication for structured
connectivity patterns

Simulates 1 million neurons and 6
billion synapses

Consumes less than 2 watts of
power



BrainScaleS (Human Brain Project)

* 200,000 neurons and 40 « Simulation of plasticity
million synapses per system models

* 20 such systems in the first  « Runs 10,000x faster than
version of the system real time

system 1%
PCB

Image Credit: https://flagship.kip.uni-heidelberg.de/public/BrainScaleS/ Image Credit: Schemmel et al. ISCAS 2010



SpiNNaker (Human Brain Project)

« Custom chips based on ARM ¢ Over 1,000,000 cores
available
e Each chip has 18 cores and
128M of shared local RAM e Based on numerical models
of neuron dynamics

Image Credit: University of Manchester



TrueNorth (IBM)

4,096 cores, each with 256
programmable neurons
(~1,000,000 neurons)

~268M programmable synapses

5.4B transistors, but only
consumes 70 milliwatts of power

Typical CPU: 1.4B transistors and
35+ watts of power

Designed for pattern recognition




Second Order Effects: What is the
model of computation?



