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Homework #7 is due tonight at 
11:59PM
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Final Project Deliverable are Due 
12/18 at 11:59PM 

(See Course Website for Instructions)
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Quiz #2 will take place on 12/11 in 
class. See review checklist on 

course website.
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Introduction

Search Problems

Neural Networks
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(week 1)

(week 2) (weeks 4 - 9) (weeks 14 - 15)

(week 3)

Bio. Intelligence

Brain Structure
(weeks 12 - 13)

Brain Function

Decisions 
(week 16)



Games with no element of chance



Games with some element of chance

Seven Wonders Game       BY 2.0 Schezar



Games of Chance



Structured Text

“The Matrix has its roots in primitive arcade games,' said the voice-over, 'in early 
graphics programs and military experimentation with cranial jacks.' On the Sony, a 
two-dimensional space war faded behind a forest of mathematically generated 
ferns, demonstrating the spatial possibilities of logarithmic spirals; cold blue military 
footage burned through, lab animals wired into test systems, helmets feeding into 
fire control circuits of tanks and war planes. 'Cyberspace. A consensual 
hallucination experienced daily by billions of legitimate operators, in every nation, by 
children being taught mathematical concepts... A graphic representation of data 
abstracted from the banks of every computer in the human system. Unthinkable 
complexity. Lines of light ranged in the nonspace of the mind, clusters and 
constellations of data. Like city lights, receding...” 



Unstructured Environment

Green Park, London - April       BY-SA 3.0 Diliff



Acting Under Uncertainty

Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Agents need to handle uncertainty

‣Due to partial observability

‣ Due to non-determinism
‣ Due to a combination of the two



Problems with Belief States

• Partial sensor information: the agent has to consider 
every logically possible explanation for the available 
observations. 

• Contingency plans: as the state space grows, so does the 
space for contingency planning 

• What if we don’t have a plan? We still need to choose an 
action 



Rationality

Russell and Norvig tell us: The right thing to do — the rational 
decision — therefore depends on both the relative importance 
of various goals and the likelihood that, and the degree to 
which, they will be achieved.



The Frequentist Philosophy

Numbers can only come from experiments

From any finite sample, we can estimate the true fraction 
and also calculate how accurate our estimate is likely to be

Example: If we test 100 people and find that 
10 of them have a cavity, then we can say the 
probability of a cavity is approximately 0.1.



Summarizing Uncertainty

Let’s try to diagnose a patient’s toothache:

Toothache ⇒ Cavity. 

Toothache ⇒ Cavity ⋁ GumProblem ⋁ Abscess … 

Cavity ⇒ Toothache. 



Why does logic fail for medical 
diagnosis?

• Laziness: It is too much work to list the complete set of 
antecedents or consequences needed to ensure an 
exceptionalness rule and too hard to use such rules 

• Theoretical ignorance: Medical science has no 
complete theory for the domain 

• Practical ignorance: Even if we know all the rules, we 
might be uncertain about a particular patient because not 
all the necessary tests have been or can be run 



Probability Theory as an 
Alternative
Probability provides a way of summarizing the uncertainty 
that comes from our laziness and ignorance 

We might not know what for sure afflicts a particular patient, 
but maybe there is an 80% chance that a patient with a 
toothache has a cavity

This belief could come from statistical data

Or it could come from general dental knowledge

Or it could come from some combo of evidence



Reminder: Probabilities

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

0.25 0.50 0.25

Example: Traffic on freeway 
‣ Random variable: T = whether there’s traffic 
‣ Outcomes: T in {none, light, heavy} 
‣ Distribution: P(T = none) = 0.25, P(T = light) = 0.50, P(T = heavy) = 0.25 



Reminder: Probabilities

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Some laws of probability (more later): 
‣ Probabilities are always non-negative 
‣ Probabilities over all possible outcomes sum to one 

As we get more evidence, probabilities may change: 
‣ P(T = heavy) = 0.25, P(T = heavy | Hour = 8am) = 0.60 

‣ We’ll talk about methods for reasoning and updating probabilities later 

0.60



Sample Space

The set of all possible worlds is called the sample space

The possible worlds are mutually exclusive and exhaustive

Example: rolling two dice

36 possible worlds: (1,1), (1,2), …, (6,6)



Probability Model

⌦ != sample space = elements of the space 

0  P (!)  1 for every ! and
X

!2⌦

P (!) = 1

Probability of each 
possible world Need to sum to 1



Propositions
Probabilistic assertions and queries are not usually about 
particular possible worlds, but about sets of them

We will call these sets events

The events are always described by propositions in a formal 
language

The probability associated with a proposition is defined to be 
the sum of the probabilities of the worlds in which it holds:

For any proposition �, P (�) =
X

!2�

P (!)



Unconditional or Prior Probabilities

Image credit: https://freeonlinedice.com/

Probabilities such as P(Total = 11)            and P(doubles)         
are called unconditional or prior probabilities

Such probabilities refer to degrees of belief in propositions 
in the absence of any other information



Conditional or Posterior Probabilities 

Most of the time, we have some evidence that has already 
been revealed

Example: we have rolled two dice. The first die shows a 5, 
and we are waiting for a result from the second. ?

What is the probability of rolling 
doubles given the first die is a 5? P(doubles | Die1 = 5)



Conditional or Posterior Probabilities 

Conditional probabilities are defined in terms of unconditional 
probabilities; for any propositions a and b, we have:

P (a|b) = P (a ^ b)

P (b)

Which holds true whenever P(b) > 0

Simpler form:  
product rule P (a ^ b) = P (a|b)P (b)



Bayes’ Theorem



Bayes’ Theorem

Two ways to factor a joint distribution over two variables:

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

Dividing, we get:



Bayes’ Theorem

Posterior Prior

Marginal Likelihood

Likelihood



Inference with Bayes’ Rule 

Example: Diagnostic probability from causal probability:

P (cause|e↵ect) = P (e↵ect|cause)P (cause)

P (e↵ect)

m: meningitis, s: stiff neck Example
givens

P (+s|�m) = 0.01

P (+m) = 0.0001
P (+s|+m) = 0.8

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Pacman as Ghostbuster

Let’s say we have two distributions: 

‣ Prior distribution over ghost location: P(G) 

• Let’s say this is uniform 

‣ Sensor reading model: P(R | G) 

• Given: we know what our sensors do 

• R = reading color measured at (1,1) 

• e.g., P(R = yellow | G = (1,1)) = 0.1

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Pacman as Ghostbuster

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 

We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule: 



Conditional Independence
Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

X is conditionally independent of Y given Z

 If and only if:

Or, equivalently, if and only if: 

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Conditional Independence and the 
Chain Rule 

Chain rule: 

Trivial decomposition:

With assumption of conditional independence:

Bayes’ nets / graphical models help us express conditional 
independence assumptions

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Pacman as Ghostbuster: The Chain Rule

Each sensor depends only on where the ghost is

That means, the two sensors are conditionally independent, 
given the ghost position

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 



Pacman as Ghostbuster: The Chain Rule

T B G P(T,B,G)

+t +b +g 0.16
+t +b -g 0.16
+t -b +g 0.24
+t -b -g 0.04
 -t +b +g 0.04
-t +b -g 0.24
-t -b +g 0.06
-t -b -g 0.06

P(T, B, G) = P(G) P(T | G) P(B | G)T: Top square is red 
B: Bottom square is red 
G: Ghost is in the top

Givens:
P( +g ) = 0.5 
P(  -g ) = 0.5 
P( +t  | +g ) = 0.8 
P( +t  |  -g ) = 0.4 
P( +b | +g ) = 0.4 
P( +b |  -g ) = 0.8

Slide credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 


