CSE 40171: Artificial Intelligence

Probabilistic Read-Out Layers for Artificial Neural Networks: Bayesian Hierarchical Modeling

Homework #8 is due on 12/11 at 11:59PM

Final Project Deliverable are Due 12/18 at 11:59PM

(See Course Website for Instructions)

Quiz #2 will take place on 12/11 in class. See review checklist on course website.

How do we deploy Bayes' theorem for decision making?

Course Instructor Feedback (CIF) Deadline: 11:59PM, 12/15/19

Hierarchies in Vision

Hierarchies in Language

Kazakov and Dobnik Topics in Phonetics and Computational Linguistics 2003

Hierarchies in Abstract Knowledge

Bayesian Hierarchical Modeling

- A statistical model written at multiple levels (i.e., a hierarchy)
- Estimates the parameters of the posterior distribution using Bayesian inference
- Sub-models combine to form the hierarchical model
 - Bayes' theorem is used to integrate them with the observed data (accounting for uncertainty)
 - Result is a probability estimate (the read-out value we want)

Advantages of Bayesian Hierarchical Modeling

- The right approach when information is available at different levels
- Hierarchical form of analysis and organization helps in the understanding of multiparameter problems
- Important for developing computational strategies

Forms of hierarchical models

Coherent Object Model

Constraints on the hypotheses considered by the learner

Exchangeability

Primer:

Let's assume *n* values y_1, y_2, \ldots, y_n are exchangeable

Let's also assume that θ_j is a parameter vector associated with each y_j

If no information is available to distinguish any of the θ_j s, and no order or grouping of the associated parameters can be made, one must assume symmetry among the parameters in their prior distribution

The symmetry is represented probabilistically by **exchangeability**

Finite Exchangeability

We typically model data from an exchangeable distribution as i.i.d., but there is some nuance to this

Example:

How do the probabilities work out if we sample without replacement?

Finite Exchangeability

In the previous example, y_1 and y_2 are exchangeable, but they aren't independent

If $x_1, x_2, ..., x_n$ are i.i.d., then they are exchangeable, but the converse is not necessarily true

Infinite Exchangeability

Infinite exchangeability is the property that every finite subset of a sequence $y_1, y_2, ...$ is exchangeable

For any *n*, the sequence y_1, y_2, \ldots, y_n is exchangeable

Formulating Hierarchical Models

Components

Need two important pieces to derive the posterior distribution:

- 1. Hyperparameters: parameters of the prior distribution
- 2. Hyperpriors: distributions of hyperparameters

Pre-requisites

Suppose a random variable Y follows a normal distribution with θ as the mean and 1 as the variance:

$$Y \mid \theta \sim N(\theta, 1)$$

Suppose θ is normally distributed with mean μ and variance 1:

$$\theta \mid \mu \sim N(\mu, 1)$$

 μ is a **hyperparameter**, and its distribution is a standard normal, which is a **hyperprior**

Multiple stages? μ follows another normal distribution with mean β and variance ϵ (these are also hyperparameters with hyperpriors)

Notation

Let y_j be an observation and θ_j a parameter governing the data generating process of y_j .

Assume parameters $\theta_1, \theta_2 \dots \theta_j$ are generated exchangeably from a common population, with a distribution governed by a hyper parameter ϕ

Bayesian Hierarchical Model Stages

Stage I: $y_j \mid \theta_j, \phi \sim P(y_j \mid \theta_j, \phi) \leftarrow$ likelihood Stage II: $\theta_j \mid \phi \sim P(\theta_j \mid \phi) \leftarrow$ prior distribution Stage III: $\phi \sim P(\phi) \leftarrow$ likelihood depends on hyperparameter through θ_j

Bayesian Hierarchical Model Stages

Prior distribution from Stage I can be broken down into:

$$P(heta_j,\phi) = P(heta_j \mid \phi) P(\phi)$$

With ϕ as its hyperparameter with hyperprior distribution $P(\phi)$

Bayesian Hierarchical Model Stages

Posterior distribution is proportional to:

 $P(\phi, \theta_j \mid y) \propto P(y_j \mid \theta_j, \phi) P(\theta_j, \phi) \longleftarrow$ using Bayes' theorem $P(\phi, \theta_j \mid y) \propto P(y_j \mid \theta_j) P(\theta_j \mid \phi) P(\phi)$

Example

A teacher wants to estimate how well a female student did on the SAT. He uses information on the student's high school grades and her current GPA to make an estimate

Y = current GPA

 θ = SAT score

Y has a likelihood given by some probability function with θ :

 $Y \mid heta \sim P(Y \mid heta)$

Example

The SAT score is a sample coming from a common population distribution indexed by another parameter ϕ , which is the high school grade of the student:

$$heta \mid \phi \sim P(heta \mid \phi)$$

The hyperparameter ϕ follows its own distribution given by $P(\phi)$, a hyperprior

To solve for the SAT score given information on the GPA:

$$\begin{split} P(\theta, \phi \mid Y) &\propto P(Y \mid \theta, \phi) P(\theta, \phi) \\ P(\theta, \phi \mid Y) &\propto P(Y \mid \theta) P(\theta \mid \phi) P(\phi) \end{split}$$

2-stage Hierarchical Model

The joint posterior distribution of interest in 2-stage hierarchical models is:

$$\begin{split} P(\theta, \phi \mid Y) &= \frac{P(Y \mid \theta, \phi) P(\theta, \phi)}{P(Y)} = \frac{P(Y \mid \theta) P(\theta \mid \phi) P(\phi)}{P(Y)} \\ P(\theta, \phi \mid Y) \propto P(Y \mid \theta) P(\theta \mid \phi) P(\phi) \end{split}$$

3-stage Hierarchical Model

For 3-stage hierarchical models, the posterior distribution is given by:

$$egin{aligned} P(heta,\phi,X\mid Y) &= rac{P(Y\mid heta)P(heta\mid\phi)P(heta\mid X)P(X)}{P(Y)} \ &P(heta,\phi,X\mid Y) \propto P(Y\mid heta)P(heta\mid\phi)P(heta\mid X)P(X) \end{aligned}$$

Software: PyMC3

https://docs.pymc.io