CSE 40171:
Artificial Intelligence

Probabilistic Read-Out Layers for Artificial Neural Networks:
Bayesian Hierarchical Modeling
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Homework #8 is due on 12/11 at
11:59PM




Final Project Deliverable are Due
12/18 at 11:59PM

(See Course Website for Instructions)
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Quiz #2 will take place on 12/11 in
class. See review checklist on
course website.
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Course Instructor Feedback (CIF)
Deadline: 11:59PM, 12/15/19
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Hierarchies in Vision

Tenenbaum et al. Science 2011



Hierarchies in Language
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Hierarchies in Abstract Knowledge

(b)

Roberto 1997



Bayesian Hierarchical Modeling

e A statistical model written at multiple levels (i.e., a hierarchy)

e Estimates the parameters of the posterior distribution using
Bayesian inference

e Sub-models combine to form the hierarchical model

» Bayes' theorem is used to integrate them with the observed data
(accounting for uncertainty)

» Result is a probability estimate (the read-out value we want)



Advantages of Bayesian Hierarchical
Modeling

* The right approach when information is available at
different levels

* Hierarchical form of analysis and organization
helps in the understanding of multiparameter
problems

 Important for developing computational
strategies



Forms of hierarchical models
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Coherent Object Model

Li et al. CVPR 2009
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Constraints on the hypotheses
considered by the learner
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-Xchangeability



Primer:

Let's assume n values y1, y2, ... yn are exchangeable

Let's also assume that 6; is a parameter vector
associated with each y;

It no information is available to distinguish any of the 6;s,
and no order or grouping of the associated parameters
can be made, one must assume symmetry among the
parameters in their prior distribution

The symmetry is represented probabilistically by
exchangeability



FInite Exchangeabillity

We typically model data from an exchangeable distribution
as i.1.d., but there is some nuance to this

Example:

How do the probabilities work out if we sample without
replacement?




FInite Exchangeabillity

In the previous example, y1 and y, are exchangeable, but
they aren’t independent

It x1, x2, ... xn @re i.i.d., then they are exchangeable, but the
converse Is not necessarily true



Infinite Exchangeabillity

Infinite exchangeability is the property that every finite subset
of a sequence yi, y2, ... IS exchangeable

For any n, the sequence y1, y2, ... yn IS €xchangeable



-ormulating Hierarchical Models



Components

Need two important pieces to derive the posterior
distribution:

1. Hyperparameters: parameters of the prior distribution

2. Hyperpriors: distributions of hyperparameters



Pre-requisites

Suppose a random variable Y follows a normal distribution with 6 as
the mean and 1 as the variance:

Y|0~N@, 1)
Suppose 4 is normally distributed with mean u and variance 1:
0u ~Nu 1)

w i1s a hyperparameter, and its distribution is a standard normal, which is
a hyperprior

Multiple stages? u follows another normal distribution with mean g and
variance e (these are also hyperparameters with hyperpriors)



Notation

Let y; be an observation and 6; a parameter governing the data
generating process of y;.

Assume parameters 61, 6> .. 6;are generated exchangeably from a
common population, with a distribution governed by a hyper
parameter ¢



Bayesian Hierarchical Model
Stages

StageI:y; | 0;,¢ ~ P(y; | 0;,¢) +— likelihood
StageII: 0, | ¢ ~ P(0; | ) «— prior distribution

Stage III: ¢ ~ P(¢) «— likelihood depends on
hyperparameter through 6;



Bayesian Hierarchical Model
Stages

Prior distribution from Stage | can be broken down into:

P(0;,¢) = P(6; | ¢)P(¢)

With ¢ as its hyperparameter with hyperprior distribution P(¢)



Bayesian Hierarchical Model
Stages

Posterior distribution is proportional to:

P(#,0; | y) o< P(y; | 6;,%)P(0;,$) «— using Bayes’ theorem
P(,0; | y) o< P(y; | 6;)P(0; | $)P(9)



A teacher wants to estimate how well a
female student did on the SAT. He uses
information on the student’s high school

grades and her current GPA to make an
estimate

Y = current GPA
0 = SAT score

Y has a likelihood given by some probability function with 6:

Y |6~ P(Y|0)



Example

The SAT score is a sample coming from a common population distribution
indexed by another parameter ¢, which is the high school grade of the
student:

0o~ PO]9)

The hyperparameter ¢ follows its own distribution given by P(¢),
a hyperprior

To solve for the SAT score given information on the GPA:

P(6,¢|Y) o< P(Y | 6,9)P(6,¢)
PO,¢|Y) o P(Y | 0)P(0 | ¢)P(9)



2-stage Hierarchical Model

The joint posterior distribution of interest in 2-stage
hierarchical models is:

P(Y |6,9)P(6,4)  P(Y |6)P(0| $)P(¢)

P6,6 1Y) = —— oY)

P6,¢|Y)x P(Y |0)P(6 | ¢)P(9)



3-stage Hierarchical Model

For 3-stage hierarchical models, the posterior distribution is
given by:

P(Y | 0)P(60 | )P(¢ | X)P(X)
P(Y)
P(6,4,X | Y) x P(Y | 0)P(6 | $)P(¢ | X)P(X)

P0,9,X |Y) =



Software: PyMC3

4JPYMC3

https://docs.pymc.io



