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Homework #8 is due on 12/11 at 
11:59PM
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Final Project Deliverable are Due 
12/18 at 11:59PM 

(See Course Website for Instructions)
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Quiz #2 will take place on 12/11 in 
class. See review checklist on 

course website.



How do we deploy Bayes’ 
theorem for decision making?
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How'm I  
doin'?

Course Instructor Feedback (CIF)
Deadline: 11:59PM, 12/15/19



Hierarchies in Vision

Tenenbaum et al. Science 2011



Hierarchies in Language

Kazakov and Dobnik Topics in Phonetics and Computational Linguistics 2003



Hierarchies in Abstract Knowledge

Roberto 1997



Bayesian Hierarchical Modeling

•  A statistical model written at multiple levels (i.e., a hierarchy) 

• Estimates the parameters of the posterior distribution using 
Bayesian inference 

• Sub-models combine to form the hierarchical model 
‣ Bayes' theorem is used to integrate them with the observed data 

(accounting for uncertainty) 

‣  Result is a probability estimate (the read-out value we want)



Advantages of Bayesian Hierarchical 
Modeling

• The right approach when information is available at 
different levels 

• Hierarchical form of analysis and organization 
helps in the understanding of multiparameter 
problems 

• Important for developing computational 
strategies



Forms of hierarchical models
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Coherent Object Model

Li et al. CVPR 2009



Constraints on the hypotheses 
considered by the learner

Kemp et al. Developmental Science 2007



Exchangeability



Primer:
Let’s assume n values y1, y2, … yn are exchangeable

Let’s also assume that θj is a parameter vector 
associated with each yj

If no information is available to distinguish any of the θjs, 
and no order or grouping of the associated parameters 
can be made, one must assume symmetry among the 
parameters in their prior distribution

The symmetry is represented probabilistically by 
exchangeability



Finite Exchangeability
We typically model data from an exchangeable distribution 
as i.i.d., but there is some nuance to this

Example:

How do the probabilities work out if we sample without 
replacement? 



Finite Exchangeability

In the previous example, y1 and y2 are exchangeable, but 
they aren’t independent

If x1, x2, … xn are i.i.d., then they are exchangeable, but the 
converse is not necessarily true



Infinite Exchangeability

Infinite exchangeability is the property that every finite subset 
of a sequence y1, y2, … is exchangeable

For any n, the sequence y1, y2, … yn is exchangeable



Formulating Hierarchical Models



Components

Need two important pieces to derive the posterior 
distribution: 

1. Hyperparameters: parameters of the prior distribution

2. Hyperpriors: distributions of hyperparameters



Pre-requisites
Suppose a random variable Y follows a normal distribution with θ as 
the mean and 1 as the variance: 

Y | θ ~ N(θ, 1)

θ | µ  ~ N(µ, 1)

Suppose θ is normally distributed with mean µ and variance 1: 

µ is a hyperparameter, and its distribution is a standard normal, which is 
a hyperprior  

Multiple stages? µ follows another normal distribution with mean β and 
variance ϵ (these are also hyperparameters with hyperpriors)



Notation

Let yj be an observation and θj a parameter governing the data 
generating process of yj.

Assume parameters θ1, θ2 … θj are generated exchangeably from a 
common population, with a distribution governed by a hyper 
parameter ϕ 



Bayesian Hierarchical Model 
Stages

likelihood

prior distribution

likelihood depends on 
hyperparameter through θj  



Bayesian Hierarchical Model 
Stages

Prior distribution from Stage I can be broken down into:

With ϕ as its hyperparameter with hyperprior distribution P(ϕ)



Bayesian Hierarchical Model 
Stages

Posterior distribution is proportional to: 

using Bayes’ theorem



Example
A teacher wants to estimate how well a 
female student did on the SAT. He uses 
information on the student’s high school 
grades and her current GPA to make an 
estimate

Y = current GPA
θ = SAT score

Y has a likelihood given by some probability function with θ:



Example

The SAT score is a sample coming from a common population distribution 
indexed by another parameter ϕ, which is the high school grade of the 
student:

The hyperparameter ϕ follows its own distribution given by P(ϕ), 
a hyperprior

To solve for the SAT score given information on the GPA:



2-stage Hierarchical Model

The joint posterior distribution of interest in 2-stage 
hierarchical models is:



3-stage Hierarchical Model

For 3-stage hierarchical models, the posterior distribution is 
given by:



https://docs.pymc.io

Software: PyMC3


