CSE 40567 / 60567: Computer Security

Security Basics 2
Class Slack Team:
nd-security-spr2017.slack.com

Invites going out soon!
Guest Lecture: Adam Czajka, Warsaw University of Technology

The Emerging Threat of Biometric Spoofing

Thursday, January 26th
Provable Security

There are several approaches to this:

Unconditional (information theoretic security)

• Security against all attackers
• No bound on computation
• Example: one-time pad

D. Stebila. “An introduction to provable security.” AMSI Winter School on Cryptography

Provable Security

There are several approaches to this:

Formal Methods

• Computer-verified security of scheme
• Typically assumes underlying cryptography is perfect
There are several approaches to this:

- **Reductionist Proof**

 - Manual proof of security of scheme
 - Typically reduces security of scheme to security of an underlying hard problem

“If it’s provably secure, it probably isn’t.”

-Lars Knudsen
Why isn’t provable security actually secure?

• Proofs take very specific forms against very specific attacks
• Proofs are predicated on assumptions (which aren’t realistic in all cases)
• Practical engineering problems
• They tend to miss the human element of attack
Cases where cryptographic systems break before the universe expires

- Software mistakes in implementations
- Key left in memory, OS wrote it back to disk
- Buffer overflows and other security flaws
- Side-channel attacks
- Bad UIs
- Bad user practices
Social Engineering
Low-hanging fruit

A dialogue:

sysadmin: “Yeah, this is systems engineering.”

caller: “Hi, this is Bob Wells from the sales team, I’m trying to log into our portal from a customer’s site, and I left my dang credentials back at the office.”

sysadmin: “OK. To verify your identity, I’ll need your UID, social security num…”

caller: “Look buddy, I don’t have time for all of that, you want to explain to corporate how you blew a $10M deal by making my customer walk out while I play 20 questions?”

sysadmin: *sigh* “Here’s your password…”
A little reconnaissance improves the execution

- Need info on your mark? The BMV is your best friend
 - Old PI trick
 - Address, Phone Number, Date of Birth, Make and Model of Car
Get hired as a janitor

• Physical access to target facility
 - Access to computers
 - Handwritten passwords in vicinity of workstations
 - You’re handling the trash — a trove of useful information
 - Plant thumb-drives with malware
Software can be an effective social engineer

PayPal

Information Regarding Your account:

Dear PayPal Member:

Attention! Your PayPal account has been limited!

As part of our security measures, we regularly screen activity in the PayPal system. We recently contacted you after noticing an issue on your account. We requested information from you for the following reason:

Our system detected unusual charges to a credit card linked to your PayPal account.

Reference Number: PP-768-312-588

This is the last reminder to log in to PayPal as soon as possible. Once you log in, you will be provided with steps to restore your account access.

Once you log in, you will be provided with steps to restore your account access. We appreciate your understanding as we work to ensure account safety.

Protect Your Account Info

Make sure you never provide your password to fraudulent websites.

To safely and securely access the PayPal website or your account, open a new web browser (e.g., Internet Explorer or Netscape) and type in the PayPal login page (http://paypal.com/) to be sure you are on the real PayPal site.

For more information on protecting yourself from fraud, please review our Security Tips at: https://www.paypal.com
Why are attacks that target the user so hard to defend against?

Human errors made while considering a security regime fall into three categories:

1. Slips and lapses at the level of skill
2. Mistakes at the level of rules
3. Mistakes at the cognitive level
Slips and lapses at the level of skill

Inattention can cause a practiced action to be caused instead of an intended one.

Example:

Danny Sullivan © BY 2.0 Google/Firefox Phishing Warning
Mistakes at the level of rules

Actions people take by following rules are open to errors when they follow the wrong rule

Example: tricky URL

https://www.citibank.secureauthentiction.com
Mistakes at the cognitive level

Many of us simply don’t understand the problem

Example: picture-in-picture attack

Image Credit:
Our Guiding Philosophy of Security
Fundamentally, computer hacking is a social problem that cannot be addressed entirely by technology
Risk Mitigation

Assume that any system can be compromised

Security systems have many components and connections

Some of these are unknown to the designers, implementors and users

Our best strategy: lessen the risk of attack
Risk Mitigation

Security involves processes:

- Preventative technologies
- Detection and Reaction
- Forensic Systems
Security through obscurity is not good security

• Many people think that a security system becomes more secure if its internal structure is secret
 ‣ Example: A secret encryption algorithm

BUT: The exact opposite is the case
Kerckhoffs’ principle

“The security of a cryptographic system shall always and only depend on the secrecy of the key. Everything about the algorithm except for the keys shall be open.”
Kerckhoffs’ principle

- Open and standardized systems are subject to constant analysis by the international research community
- Secret systems can only be analyzed by internal specialists
 - Unless an agency or company has a huge budget, severe and constant analysis of internal security systems is not easy
Extending Kerckhoffs’ principle

Bruce Schneier: “Kerckhoffs’ principle applies beyond codes and ciphers to security systems in general: every secret creates a potential failure point. Secrecy, in other words, is a prime cause of brittleness—and therefore something likely to make a system prone to catastrophic collapse. Conversely, openness provides ductility.”
Extending Kerckhoffs’ principle

- Any system whose security depends on keeping the details of the system secret is not secure in the long run.

- **Defense in depth** suggests layers, some of which may contain secrets, but the core must be secure without them.

- Keeping the “algorithm” and key concepts secret increases the asymmetric information, potentially keeping even experts from evaluating the system without significant effort.
Vulnerability Disclosure

What do we do if we find a bug that leads to system compromise?

➡ Ethical Dilemma

The controversy is not new: locksmiths worried about the same thing in the 19th century

Non-disclosure

- Premise: vulnerability information helps attackers, and shouldn’t be shared
- Situation in computer security up to the mid-1990s
 - Enforced via vendor legal intimidation and censorship

http://attrition.org/errata/legal_threats/
Coordinated Disclosure

Microsoft’s position: software vendors have right to control product vulnerability information

- Risk of sharing vulnerability with malicious parties is too high
- Vulnerability is disclosed after the patch is released

Full disclosure

"We don't believe in security by obscurity, and as far as we know, full disclosure is the only way to ensure that everyone, not just the insiders, have access to the information we need."

- Leonard Rose (aka Terminus)

Without full disclosure:

- Vendors have no incentive to release patches if there is no customer demand for them
- Sysadmins can’t make informed decisions about risks to their systems
- Malicious individuals have a longer window to exploit a flaw
Basic Terminology
System

1. Product or component

2. All of the above + an OS, communications and other infrastructure components

3. All of the above + one or more applications

4. All of the above + IT staff

5. All of the above + internal users and management

6. All of the above + customers and other external users
A protocol is a series of steps, involving two or more parties, designed to accomplish a task

- Participants must know the protocol and all of the steps to follow
- Everyone involved in the protocol must agree to follow it
- The protocol must be unambiguous
- The protocol must be complete
- It should not be possible to do more or learn more than what is specified in the protocol
Principal Actors

To demonstrate protocols, we need the help of some friends:
First participant in all protocols (A)

Second participant in all protocols (B)
Some protocols are between more than two actors

Carol
Participant in three- and four-way protocols (C)

Dave
Participant in four-way protocols (D)
Not everyone is honest…

Eavesdropper (E)

Eve
Not everyone is honest...

Malicious active attacker (M)
Authentication

It should be possible for the receiver of a message to determine its origin.

An intruder should not be able to impersonate someone else.

Alice sent this.
Integrity

It should be possible for the receiver of a message to verify that it hasn’t been modified.

An intruder should not be able to substitute a false message for a legitimate one.