CSE 40567 / 60567: Computer Security

Cryptography 2
Homework #2 Released
Due: 2/9/17 at 11:59PM Eastern Time

See Assignments Page on the course website for details
Reflection Attacks
Stopping reflection attacks

Alice and Bob need to identify each other; include IDs in the transaction:

1. \(A \rightarrow B: N \)

2. \(B \rightarrow A: \{B, N\}_K \)

ID is tied to a specific actor

- IDs can be checked with known actors
- If known actor didn’t send, reflection attack is detected
Manipulating the message
Changing the environment

Original ATM

• End-to-end encryption

Switch to Cheaper ATM

• Doesn’t treat info on magnetic strip as secret
• Assumes operation in a trustworthy environment
Chosen Protocol Attack

Given some target protocol:

Design a new protocol that will attack the target protocol if users can be persuaded to reuse information

- Token
- Crypto Key
Chosen Protocol Attack

Protocols share elements

Protocol 2

Customer

Picture 143!

Prove your age by signing ‘X’

Mafia porn site

\(\text{sig}_K \{X\} \)

Protocol 1

Buy 10 gold coins

BANK

\(\text{sig}_K \{X\} \)

Image credit: R. Anderson, Security Engineering
Ways to mitigate chosen protocol attack

• Do not allow crypto keys to be used by more than one application

• Do not let other people bootstrap their own application security off of yours
 ▸ Be aware of security dependencies
Key management strategies

Thus far, we’ve discussed authenticating actors, but have assumed keys were already in-place for the protocols.

How can we use authentication protocols to help us exchange keys securely?
Basic Key Management

• Let’s assume Carol is a trusted third party
• Carol distributes certificates upon request

• A certificate is an electronic document that conveys a key and related meta-data
• Guaranteed by Carol
Basic Key Exchange Protocol

1. $A \rightarrow C: A, B$

2. $C \rightarrow A: \{A, B, K_{AB}, T\}_{K_{AC}}, \{A, B, K_{AB}, T\}_{K_{BC}}$

3. $A \rightarrow B: \{A, B, K_{AB}, T\}_{K_{BC}}, \{X\}_{K_{AB}}$
Needham-Schroeder Protocol

Like the basic key exchange protocol, but with nonces instead of timestamps:

1. $A \rightarrow C$: A, B, N_A

2. $C \rightarrow A$: $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BC}}\}_{K_{AC}}$

3. $A \rightarrow B$: $\{K_{AB}, A\}_{K_{BC}}$

4. $B \rightarrow A$: $\{N_B\}_{K_{AB}}$ Bob checks if Alice is alert

5. $A \rightarrow B$: $\{N_B - 1\}_{K_{AB}}$

Flaw in Needham-Schroeder Protocol

Bob has to assume K_{AB} from Carol is fresh

- K_{AB} is always conveyed by Alice
- What if Alice waited a year between steps 2 and 3?
 - Mallory can use K_{AB} to establish a session with Bob
 - If K_{AB} is compromised, Bob can’t easily detect a change made by Carol
Flaw in Needham-Schroeder Protocol

1. Alice requests and receives a key to communicate with Bob

2. Mallory steals K_{AC}

3. Mallory intercepts $\{K_{AB}\}_{K_{AC}}$

4. Mallory requests and receives a key to communicate with Dave
Alice’s response to compromise

- Assume Alice finds out about the stolen key by comparing message logs with Bob
- Alice initiates **key revocation**

![Key Revocation Diagram]

\[K_{AC} \xrightarrow{\text{key reissue}} K'_{AC} \]
Trouble with key revocation in Needham-Schroeder protocol

• Alice can’t handle the key revocation by herself
 ‣ She has no idea that Mallory has her key for communication with Dave

• Carol must handle key revocation and reissue
 ‣ She needs to keep an exhaustive log for every key request

Alice requested Bob’s key, Alice requested Dave’s key, Bob requested Alice’s key, Bob requested Dave’s key, Dave requested Bob’s key…
Fundamental Problem: Assumptions

- Anderson: “1978 was a kinder, gentler world”
 - Computer security in that era focused on keeping “bad guys” out
 - Now we expect users to be adversaries
- Needham-Schroeder works if all of the actors behave themselves, and attacks only come from the outside
Kerberos

Two trusted third-parties:
1. Authentication server, which users log into
2. Ticket granting server, which gives users tickets needed to access resources

“And before them a dreaded hound, on watch, who has no pity, but a vile stratagem.”
Kerberos protocol

Authentication server: Carol
Ticket granting server: Dave

Alice needs access to a resource provided by Bob:

1. $A \rightarrow C: P$ session key
2. $C \rightarrow A: \{K_{AS}\}_P$ lifetime
3. $A \rightarrow D: A, B$ transaction key
4. $D \rightarrow A: \{T_D, L, K_{AB}, B\{T_D, L, K_{AB}, A\}_K_B\}_K_{AS}$
5. $A \rightarrow B: \{T_D, L, K_{AB}, A\}_K_B, \{A, T_A\}_K_{AB}$
6. $B \rightarrow A: \{T_A + 1\}_K_{AB}$ Bob’s key (known by Bob and Dave)
What does this fix in Needham-Schroeder?

• Timestamps are used in place of nonces
 ‣ Revoked / expired keys are easily detected
 ‣ New source of trouble: out of synch clocks

Race conditions
Where is Kerberos used?

Kerberos is the default authentication mechanism in Microsoft Windows

1. Account is created on the Domain Controller and given password
2. Kerberos client creates shared secret
3. User enters username and password, Kerberos client generates secret key on the client
4. User and Authentication Service running on the Domain Controller communicate using shared secret

https://redmondmag.com/articles/2012/02/01/understanding-the-essentials-of-the-kerberos-protocol.aspx
Practical considerations for key management

- Passing around symmetric keys is messy
- **Public-key Cryptography** helps us somewhat
 - Public Key Infrastructure
- We’ll have a lot more to say about this…
BAN (Burrows–Abadi–Needham) Logic

\[A \models X \quad \text{Alice believes } X \]
\[A \models \sim X \quad \text{Alice once said } X \]
\[A \models \Rightarrow X \quad \text{Alice has jurisdiction over } X \]
\[A \models < X \quad \text{Alice sees } X \]
\[\#X \quad X \text{ is fresh} \]
\[\{X\}_k \quad X \text{ is encrypted under the key } k \]
\[A \leftrightarrow^k B \quad A \text{ and } B \text{ share the key } k \]
Message meaning rule

If Alice sees a message encrypted under \(k \), and \(k \) is a good key for communicating with Bob, then she will believe that the message was once said by Bob.

\[
A \models A \leftrightarrow^k B, \ A \models \{X\}_k
\]

\[
A \models B \models \sim X
\]
Nonce-verification rule

If Bob once said a message, and the message is fresh, then Alice believes it.

\[
A \models \#X, A \models B \models \neg X \\
\models A \models B \models X
\]
Jurisdiction rule

If Bob believes something, and is an authority on the matter, then Alice should believe him.

\[
A \models B \Rightarrow X, A \models B \models X
\]

\[
A \models X
\]
Smartcard banking protocol

Transaction takes place between Alice’s smart card and a vending machine owned by Bob, which contains his smart card.

1. \(A \rightarrow B: \{A, N_A\}_k \)
2. \(B \rightarrow A: \{B, N_B, A, N_A\}_k \)
3. \(A \rightarrow B: \{A, N_A, B, N_B, X\}_k \)

electronic check
Verification of smartcard banking protocol

Assumption: k is only available to actors who can be trusted to execute the protocol faithfully.

Goal: Prove that Bob should trust the check $B \models X$.

Reasoning proceeds backwards.