
Cryptography 3

CSE 40567 / 60567:  
Computer Security
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Homework #2 has been released. It is due 
Thursday, Feb. 6th at 11:59PM 
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See Assignments Page on the course 
website for details



Cryptographic Algorithms
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Random Number Generation

• Where do random numbers come from?
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“Anyone who considers arithmetical methods of producing 
random digits is, of course, in a state of sin”

-Knuth quoting von Neumann

B. Schneier, Applied Cryptography, Chpt. 2

‣ Produced by computers (Pseudo-random) 
‣ Measured from physical phenomena (Real Random)



Pseudo-random Sequences

1. It looks random. Passes all statistical tests of randomness 
that we can find* 

2. It is unpredictable. Computationally infeasible to predict 
what the next random bit will be, given complete 
knowledge of the algorithm, hardware, and all previous bits

�57*D. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 2nd Edition, 1981

s1, f (s1) = 01011110… 
s2, f (s2) = 11010111… 
s3, f (s3) = 10101110…

• Seed sx is treated as a secret 
• A seed will yield the same 

sequence when reused



Real Random Sequences

3. It cannot be reliably reproduced. If you run the generator 
twice with exactly the same input, you will get two completely 
unrelated random sequences

�58

Sources of entropy

Timing of read/write 
head movement

Laptop hard drive exposed         BY-SA 3.0 Evan-Amos

Noise from a reverse bias 
transistor, e.g., Raspberry 
Pi HRNG 



Sources of random numbers
• /dev/random - blocking pseudo-random number 

generator (hash implementation via SHA) 
‣ Handy way to check the entropy pool:                               
$ cat /proc/sys/kernel/random/entropy_avail 

• /dev/urandom - unlimited non-blocking 
pseudorandom number generator 

• Python: import random (Mersenne Twister) 
>>>  random.seed(1)                        
>>> random.random()
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Random number generation in 
GPG
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$ gpg --gen-key

gpg (GnuPG) 1.4.11; Copyright (C) 2010 Free Software 
Foundation, Inc. This is free software: you are free to 
change and redistribute it. There is NO WARRANTY, to the 
extent permitted by law.

We need to generate a lot of random bytes. It is a good idea 
to perform some other action (type on the keyboard, move the 
mouse, utilize the disks) during the prime generation; this 
gives the random number generator a better chance to gain 
enough entropy. 

Not enough random bytes available.  Please do some other work 
to give the OS a chance to collect more entropy! (Need 284 
more bytes)



One-way functions
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• Input maps to unique output 
• Given x, it is easy to compute f (x) 

• Given f (x), it is hard to compute x

Analogy: breaking a window

It’s easy to smash a window into a 
thousand pieces; not easy to put it 
back together.

Broken Glass         BY 2.0 Christian Schnettelker



Recall hash functions from Data 
Structures

• Hash Tables are useful data structures that allow 
searching in O(1) time 
‣ Facilitated by a hash function
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size_t precision = 2;  
size_t hash(const char* str) 
{ 
   return (*(size_t*)str)>> precision; 
}

Example:



Requirements for cryptographically 
strong hash functions

• Must be collision-free: hard to generate two inputs 
with the same hash value 

• The output must not be dependent on the input in 
any discernible way 

• A single bit change in the input changes, on 
average, half of the bits in the hash value 

• Given a hash value, it is computationally infeasible 
to find the input that hashes to that value

�63



md5
• 128-bit hash function 

• Input: 512-bit blocks, divided into 32-bit sub-blocks 

• Output: Set of four 32-bit blocks, concatenated 

• After input padding, main loop processes input 
through four rounds
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Commonly used as checksum for downloads:

$ md5sum ubuntu-14.04.3-desktop-amd64.iso 
cab6dd5ee6d649ed1b24e807c877c0ae ubuntu-14.04.3-desktop-amd64.iso



One md5 round
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One md5 operation         BY-SA 3.0 Surachit

Chaining variables

F = non-linear function  
Mi = sub-block of the message 
Ki = constant



Non-linear functions
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Four non-linear functions, a different one for each round:

F (X, Y, Z) = (X ∧ Y) ∨ ((¬X) ∧ Z) 
G (X, Y, Z) = (X ∧ Z) ∨ (Y ∧ (¬Z)) 
H (X, Y, Z) = X ⊕ Y ⊕ Z 

I (X, Y, Z) = Y ⊕ (X ∨ ((¬Z))

If the corresponding bits of X, Y, and Z are independent 
and unbiased, then each bit of the result will also be



Collision Attack
• Note that md5’s output space is finite (128 bits), thus 

collisions must exist 
‣ But it should be infeasible to find them 

• Modular differential attack: Wang and Yu, Eurocrypt 2005 

�67
Image Credit: Lucks and Daum, Eurocrypt 2005



Modular differential attack
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We want to find a pair (M0, M1) and (M0, M1) such that: 
(a, b, c, d) = md5(a0, b0, c0, d0, M0), 

(a, b, c, d  ) = md5(a0, b0, c0, d0, M0  ), 

md5(a, b, c, d, M1) = md5(a, b, c, d, M1  ),

X. Wang and H. Yu, “How to break MD5 and Other Hash Functions,” Eurocrypt 2005

• Use modular integer subtraction as the measure of difference 
‣  Finding the first blocks (M0, M0 ) takes about 239 md5 operations 

‣  Finding the second blocks (M1, M1 ) takes about 232 md5 operations

’ ’ ’ ’ ’

’ ’ ’ ’ ’

’
’

’ ’



X1 = preamble; put(R1); 

X2 = preamble; put(R2);

Finding useful collisions
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More info: http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

Lucks and Daumen, Eurocrypt 2005
1. Use advanced document language, e.g., postscript 
2. Find random strings R1 and R2 and concatenate to some 

preamble: 

md5(X1) = md5(X2)

Append a string S to both X1 and X2:
md5(X1 || S) = md5(X2 || S)



Finding useful collisions
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Target documents are T1 and T2:

Y1 = preamble; put(R1); put(R1); if(=) then T1 else T2 

Y2 = preamble; put(R2); put(R1); if(=) then T1 else T2 

x1

x2

S

Viewing Y1: R1 = R1, thus T1 is displayed.

Viewing Y2: R2 ≠ R1, thus T2 is displayed.



Two postscript files
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a25f7f0b29ee0b3968c860738533a4b9



SHA-256
• If you need a one-way hash function, this is the one to use 
• 256-bit SHA-2 hash function designed by the NSA 

• Input: 512-bit blocks, divided into 32-bit words 

• Output: After 64 rounds, the final result is the sum, by 
individual words modulo 232, of the result of this 
transformation and the original eight word input
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Should be used as checksum for downloads:
$ sha256sum ubuntu-14.04.3-desktop-amd64.iso 
756a42474bc437f614caa09dbbc0808038d1a586d172894c1
13bb1c22b75d580  ubuntu-14.04.3-desktop-amd64.iso



One SHA-2 Round
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A schematic that shows the SHA-2 algorithm         BY-SA 3.0 Kockmeyer

Wt = tth 32-bit word of the 
message schedule 
Kt = constant



Operations performed in each 
round
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Ch (E, F, G) = (E ∧ F) ⊕ (¬E ∧ G) 
Ma (A, B, C) = (A ∧ B) ⊕ (A ∧ C) ⊕ (C ∧ C) 
∑   (A) = (A ⋙ 2) ⊕ (A ⋙ 13) ⊕ (A ⋙ 22) 

∑   (E) = (E ⋙ 6) ⊕ (E ⋙ 11) ⊕ (E ⋙ 25)
0

1



SHA-256 in LibreSSL / OpenSSL
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void sha256(char *string, char outputBuffer[65]) 
{ 
    unsigned char hash[SHA256_DIGEST_LENGTH]; 
    SHA256_CTX sha256; 
    SHA256_Init(&sha256); 
    SHA256_Update(&sha256, string, strlen(string)); 
    SHA256_Final(hash, &sha256); 
    int i; 
    for(i = 0; i < SHA256_DIGEST_LENGTH; i++) 
    { 
        sprintf(outputBuffer + (i * 2), "%02x", hash[i]); 
    } 
    outputBuffer[64] = 0; 
} 

#include <openssl/sha.h> 



Symmetric Key Cryptography

�76B. Schneier, Applied Cryptography, Chpt. 2

How do two actors communicate securely?

1. Alice and Bob agree on a cryptosystem and key

AES 
kAB

2. Alice encrypts her plaintext message using the chosen 
cryptosystem and key. This creates a ciphertext message.

X,kAB {X}kAB



Symmetric Key Cryptography
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3. Alice sends the ciphertext message to Bob.

{X}kAB

4. Bob decrypts the cipher text message with the same 
cryptosystem and key

{X}    ,kAB XkAB



Stream Ciphers

�78M. Bishop, Introduction to Computer Security, Chpt. 10

Some encryption algorithms use a non-repeating stream of 
key elements to encipher characters of a message

K K

X

Plaintext 
byte stream

Key stream 
generator

Key stream 
generator

Ciphertext 
byte stream

{X}⊕ ⊕
Encryption Decryption

k k
X

Plaintext 
byte stream

Seed Seed



Stream Ciphers
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Definition: Let E be an encryption algorithm, and let Ek(X) 
be the encryption of message X with key k. Let a 
message X = x1x2… , where each xi is of a fixed length, 
and let k = k1k2… . Then a stream cipher is a cipher for 
which Ek(X) = Ek1(x1)Ek2(x2)… . 

If the key stream k of a stream cipher repeats itself, it is a 
periodic cipher.



Synchronous Stream Ciphers

• Goal: simulate a random, infinitely long key 

- Extract bits from a register to use as the key 

‣ Contents of the register change on the basis of the 
current contents of the register
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10110001 10110001 10110001…
Period of 8:



Linear Feedback Shift Register
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Definition: An n-stage linear feedback shift register (LFSR) 
consists of an n-bit register r = r0…rn-1 and an n-bit tap 
sequence t = t0…tn-1. To obtain a key bit, rn-1 is used, the 
register is shifted one bit to the right, and the new bit 
r0t0⊕…⊕rn-1tn-1 is inserted.



Linear Feedback Shift Register Example
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Current register Key New bit New register

00 10 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 00 01

00 01 1 01⊕00⊕00⊕11 = 0⊕0⊕0⊕1 = 1 10 00
10 00 0 11⊕00⊕00⊕01 = 1⊕0⊕0⊕0 = 1 11 00

11 00 0 11⊕10⊕00⊕01 = 1⊕0⊕0⊕0 = 1 11 10

11 10 0 11⊕10⊕10⊕01 = 1⊕0⊕0⊕0 = 1 11 11

11 11 1 11⊕10⊕10⊕11 = 1⊕0⊕0⊕1 = 0 01 11

01 11 1 01⊕10⊕10⊕11 = 0⊕0⊕0⊕1 = 1 10 11

10 11 1 11⊕00⊕10⊕11 = 1⊕0⊕0⊕1 = 0 01 01
01 01 1 01⊕10⊕00⊕11 = 0⊕0⊕0⊕1 = 1 10 10

10 10 0 11⊕00⊕10⊕11 = 1⊕0⊕0⊕0= 1 11 01

11 01 1 11⊕10⊕00⊕11 = 1⊕0⊕0⊕1 = 0 01 10

01 10 0 01⊕10⊕10⊕01 = 0⊕0⊕0⊕0 = 0 01 10

00 11 1 01⊕00⊕10⊕11 = 0⊕0⊕0⊕1 = 1 00 11
10 01 1 11⊕00⊕00⊕11 = 1⊕0⊕0⊕1 = 0 10 01

01 00 0 01⊕10⊕00⊕01 = 0⊕0⊕0⊕0 = 0 01 00

00 10 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 00 01

Init.→ 

Tap sequence: 10 01

Period of 15, key is 010001111010110



Self-synchronous Stream Ciphers
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Some stream ciphers obtain the key from the message 
itself. Two strategies for this:

1. Draw the key from the plaintext (Vigenère cipher from book): 
key: XTHEBOYHASTHEBA 
plaintext: THEBOYHASTHEBAG 
ciphertext: QALFPNFHSLALFCT

2. Draw the key from the ciphertext: 
key: XQXBCQOVVNGNRTT 
plaintext: THEBOYHASTHEBAG 
ciphertext: QXBCQOVVNGNRTTM 



Block Ciphers
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Definition: Let E be an encryption algorithm, and let Ek(X) 
be the encryption of message X with key k. Let a 
message X = x1x2… , where each xi is of a fixed length. 
Then a block cipher is a cipher for which Ek(X) = 
Ek(x1)Ek(x2)… . 

Example: AES is a block cipher. It breaks the message 
into 128-bit blocks and uses the same 128-, 192- or 256-
bit key to encipher each block 



Block Ciphers
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Some encryption algorithms divide a message into a sequence of 
parts, or blocks, and encipher each block with the same key.

Simplest mode of operation (ECB): 

  k   k   k 

  k   k   k 



The ECB Penguin
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Image Credit: https://blog.filippo.io/the-ecb-penguin/



Cipher Block Chaining (CBC)
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ECB should not be used if encrypting more than one block of data 
with the same key (advice: just avoid it)
Alternative: make each ciphertext block dependent on all blocks 
processed up until that point

  k   k   k 

  k   k   k 



Initialization Vector Pitfall
• Predictable IVs for each transaction 

‣ CBC mode: enables online attacks with 
chosen-plaintext

�88http://sockpuppet.org/blog/2013/07/22/applied-practical-cryptography/

Example: Alice’s medical record for a specific condition
1. Assume Mallory can predict IVs: IVM and IVA

2. Mallory’s chosen plaintext: XM = IVM ⊕ IVA ⊕ “false”

3. Application encrypts: {XM} = Ek (IVM ⊕ XM) = 
Ek (IVM ⊕ (IVM ⊕ IVA ⊕ “false”))
{XM} = Ek (IVA ⊕ “false”)

4. Mallory compares ciphertexts: {XM} = {XA}?



Choosing Initialization Vectors
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The IV can be made public after encryption.  
Why is this secure?

Always use a random IV for each transaction

The IV is only used to ensure that the same plaintext 
encrypts to different ciphertexts. After it is used, there is no 
harm in releasing it, as it leaks no information about the 
plaintext.


