
Cryptography 3

CSE 40567 / 60567:
Computer Security

�53

Homework #2 has been released. It is due
Thursday, Feb. 6th at 11:59PM

�54

See Assignments Page on the course
website for details

Cryptographic Algorithms

�55

Random Number Generation

• Where do random numbers come from?

�56

“Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin”

-Knuth quoting von Neumann

B. Schneier, Applied Cryptography, Chpt. 2

‣ Produced by computers (Pseudo-random)
‣ Measured from physical phenomena (Real Random)

Pseudo-random Sequences

1. It looks random. Passes all statistical tests of randomness
that we can find*

2. It is unpredictable. Computationally infeasible to predict
what the next random bit will be, given complete
knowledge of the algorithm, hardware, and all previous bits

�57*D. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 2nd Edition, 1981

s1, f (s1) = 01011110…
s2, f (s2) = 11010111…
s3, f (s3) = 10101110…

• Seed sx is treated as a secret
• A seed will yield the same

sequence when reused

Real Random Sequences

3. It cannot be reliably reproduced. If you run the generator
twice with exactly the same input, you will get two completely
unrelated random sequences

�58

Sources of entropy

Timing of read/write
head movement

Laptop hard drive exposed BY-SA 3.0 Evan-Amos

Noise from a reverse bias
transistor, e.g., Raspberry
Pi HRNG

Sources of random numbers
• /dev/random - blocking pseudo-random number

generator (hash implementation via SHA)
‣ Handy way to check the entropy pool:
$ cat /proc/sys/kernel/random/entropy_avail

• /dev/urandom - unlimited non-blocking
pseudorandom number generator

• Python: import random (Mersenne Twister)
>>> random.seed(1)
>>> random.random()

�59

Random number generation in
GPG

�60

$ gpg --gen-key

gpg (GnuPG) 1.4.11; Copyright (C) 2010 Free Software
Foundation, Inc. This is free software: you are free to
change and redistribute it. There is NO WARRANTY, to the
extent permitted by law.

We need to generate a lot of random bytes. It is a good idea
to perform some other action (type on the keyboard, move the
mouse, utilize the disks) during the prime generation; this
gives the random number generator a better chance to gain
enough entropy.

Not enough random bytes available. Please do some other work
to give the OS a chance to collect more entropy! (Need 284
more bytes)

One-way functions

�61

• Input maps to unique output
• Given x, it is easy to compute f (x)

• Given f (x), it is hard to compute x

Analogy: breaking a window

It’s easy to smash a window into a
thousand pieces; not easy to put it
back together.

Broken Glass BY 2.0 Christian Schnettelker

Recall hash functions from Data
Structures

• Hash Tables are useful data structures that allow
searching in O(1) time
‣ Facilitated by a hash function

�62

size_t precision = 2;
size_t hash(const char* str)
{
 return (*(size_t*)str)>> precision;
}

Example:

Requirements for cryptographically
strong hash functions

• Must be collision-free: hard to generate two inputs
with the same hash value

• The output must not be dependent on the input in
any discernible way

• A single bit change in the input changes, on
average, half of the bits in the hash value

• Given a hash value, it is computationally infeasible
to find the input that hashes to that value

�63

md5
• 128-bit hash function

• Input: 512-bit blocks, divided into 32-bit sub-blocks

• Output: Set of four 32-bit blocks, concatenated

• After input padding, main loop processes input
through four rounds

�64

Commonly used as checksum for downloads:

$ md5sum ubuntu-14.04.3-desktop-amd64.iso
cab6dd5ee6d649ed1b24e807c877c0ae ubuntu-14.04.3-desktop-amd64.iso

One md5 round

�65

One md5 operation BY-SA 3.0 Surachit

Chaining variables

F = non-linear function
Mi = sub-block of the message
Ki = constant

Non-linear functions

�66

Four non-linear functions, a different one for each round:

F (X, Y, Z) = (X ∧ Y) ∨ ((¬X) ∧ Z)
G (X, Y, Z) = (X ∧ Z) ∨ (Y ∧ (¬Z))
H (X, Y, Z) = X ⊕ Y ⊕ Z

I (X, Y, Z) = Y ⊕ (X ∨ ((¬Z))

If the corresponding bits of X, Y, and Z are independent
and unbiased, then each bit of the result will also be

Collision Attack
• Note that md5’s output space is finite (128 bits), thus

collisions must exist
‣ But it should be infeasible to find them

• Modular differential attack: Wang and Yu, Eurocrypt 2005

�67
Image Credit: Lucks and Daum, Eurocrypt 2005

Modular differential attack

�68

We want to find a pair (M0, M1) and (M0, M1) such that:
(a, b, c, d) = md5(a0, b0, c0, d0, M0),

(a, b, c, d) = md5(a0, b0, c0, d0, M0),

md5(a, b, c, d, M1) = md5(a, b, c, d, M1),

X. Wang and H. Yu, “How to break MD5 and Other Hash Functions,” Eurocrypt 2005

• Use modular integer subtraction as the measure of difference
‣ Finding the first blocks (M0, M0) takes about 239 md5 operations

‣ Finding the second blocks (M1, M1) takes about 232 md5 operations

’ ’ ’ ’ ’

’ ’ ’ ’ ’

’
’

’ ’

X1 = preamble; put(R1);

X2 = preamble; put(R2);

Finding useful collisions

�69
More info: http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

Lucks and Daumen, Eurocrypt 2005
1. Use advanced document language, e.g., postscript
2. Find random strings R1 and R2 and concatenate to some

preamble:

md5(X1) = md5(X2)

Append a string S to both X1 and X2:
md5(X1 || S) = md5(X2 || S)

Finding useful collisions

�70

Target documents are T1 and T2:

Y1 = preamble; put(R1); put(R1); if(=) then T1 else T2

Y2 = preamble; put(R2); put(R1); if(=) then T1 else T2

x1

x2

S

Viewing Y1: R1 = R1, thus T1 is displayed.

Viewing Y2: R2 ≠ R1, thus T2 is displayed.

Two postscript files

�71

a25f7f0b29ee0b3968c860738533a4b9

SHA-256
• If you need a one-way hash function, this is the one to use
• 256-bit SHA-2 hash function designed by the NSA

• Input: 512-bit blocks, divided into 32-bit words

• Output: After 64 rounds, the final result is the sum, by
individual words modulo 232, of the result of this
transformation and the original eight word input

�72

Should be used as checksum for downloads:
$ sha256sum ubuntu-14.04.3-desktop-amd64.iso
756a42474bc437f614caa09dbbc0808038d1a586d172894c1
13bb1c22b75d580 ubuntu-14.04.3-desktop-amd64.iso

One SHA-2 Round

�73

A schematic that shows the SHA-2 algorithm BY-SA 3.0 Kockmeyer

Wt = tth 32-bit word of the
message schedule
Kt = constant

Operations performed in each
round

�74

Ch (E, F, G) = (E ∧ F) ⊕ (¬E ∧ G)
Ma (A, B, C) = (A ∧ B) ⊕ (A ∧ C) ⊕ (C ∧ C)
∑ (A) = (A ⋙ 2) ⊕ (A ⋙ 13) ⊕ (A ⋙ 22)

∑ (E) = (E ⋙ 6) ⊕ (E ⋙ 11) ⊕ (E ⋙ 25)
0

1

SHA-256 in LibreSSL / OpenSSL

�75

void sha256(char *string, char outputBuffer[65])
{
 unsigned char hash[SHA256_DIGEST_LENGTH];
 SHA256_CTX sha256;
 SHA256_Init(&sha256);
 SHA256_Update(&sha256, string, strlen(string));
 SHA256_Final(hash, &sha256);
 int i;
 for(i = 0; i < SHA256_DIGEST_LENGTH; i++)
 {
 sprintf(outputBuffer + (i * 2), "%02x", hash[i]);
 }
 outputBuffer[64] = 0;
}

#include <openssl/sha.h>

Symmetric Key Cryptography

�76B. Schneier, Applied Cryptography, Chpt. 2

How do two actors communicate securely?

1. Alice and Bob agree on a cryptosystem and key

AES
kAB

2. Alice encrypts her plaintext message using the chosen
cryptosystem and key. This creates a ciphertext message.

X,kAB {X}kAB

Symmetric Key Cryptography

�77

3. Alice sends the ciphertext message to Bob.

{X}kAB

4. Bob decrypts the cipher text message with the same
cryptosystem and key

{X} ,kAB XkAB

Stream Ciphers

�78M. Bishop, Introduction to Computer Security, Chpt. 10

Some encryption algorithms use a non-repeating stream of
key elements to encipher characters of a message

K K

X

Plaintext
byte stream

Key stream
generator

Key stream
generator

Ciphertext
byte stream

{X}⊕ ⊕
Encryption Decryption

k k
X

Plaintext
byte stream

Seed Seed

Stream Ciphers

�79

Definition: Let E be an encryption algorithm, and let Ek(X)
be the encryption of message X with key k. Let a
message X = x1x2… , where each xi is of a fixed length,
and let k = k1k2… . Then a stream cipher is a cipher for
which Ek(X) = Ek1(x1)Ek2(x2)… .

If the key stream k of a stream cipher repeats itself, it is a
periodic cipher.

Synchronous Stream Ciphers

• Goal: simulate a random, infinitely long key

- Extract bits from a register to use as the key

‣ Contents of the register change on the basis of the
current contents of the register

�80

10110001 10110001 10110001…
Period of 8:

Linear Feedback Shift Register

�81

Definition: An n-stage linear feedback shift register (LFSR)
consists of an n-bit register r = r0…rn-1 and an n-bit tap
sequence t = t0…tn-1. To obtain a key bit, rn-1 is used, the
register is shifted one bit to the right, and the new bit
r0t0⊕…⊕rn-1tn-1 is inserted.

Linear Feedback Shift Register Example

�84

Current register Key New bit New register

00 10 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 00 01

00 01 1 01⊕00⊕00⊕11 = 0⊕0⊕0⊕1 = 1 10 00
10 00 0 11⊕00⊕00⊕01 = 1⊕0⊕0⊕0 = 1 11 00

11 00 0 11⊕10⊕00⊕01 = 1⊕0⊕0⊕0 = 1 11 10

11 10 0 11⊕10⊕10⊕01 = 1⊕0⊕0⊕0 = 1 11 11

11 11 1 11⊕10⊕10⊕11 = 1⊕0⊕0⊕1 = 0 01 11

01 11 1 01⊕10⊕10⊕11 = 0⊕0⊕0⊕1 = 1 10 11

10 11 1 11⊕00⊕10⊕11 = 1⊕0⊕0⊕1 = 0 01 01
01 01 1 01⊕10⊕00⊕11 = 0⊕0⊕0⊕1 = 1 10 10

10 10 0 11⊕00⊕10⊕11 = 1⊕0⊕0⊕0= 1 11 01

11 01 1 11⊕10⊕00⊕11 = 1⊕0⊕0⊕1 = 0 01 10

01 10 0 01⊕10⊕10⊕01 = 0⊕0⊕0⊕0 = 0 01 10

00 11 1 01⊕00⊕10⊕11 = 0⊕0⊕0⊕1 = 1 00 11
10 01 1 11⊕00⊕00⊕11 = 1⊕0⊕0⊕1 = 0 10 01

01 00 0 01⊕10⊕00⊕01 = 0⊕0⊕0⊕0 = 0 01 00

00 10 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 00 01

Init.→

Tap sequence: 10 01

Period of 15, key is 010001111010110

Self-synchronous Stream Ciphers

�83

Some stream ciphers obtain the key from the message
itself. Two strategies for this:

1. Draw the key from the plaintext (Vigenère cipher from book):
key: XTHEBOYHASTHEBA
plaintext: THEBOYHASTHEBAG
ciphertext: QALFPNFHSLALFCT

2. Draw the key from the ciphertext:
key: XQXBCQOVVNGNRTT
plaintext: THEBOYHASTHEBAG
ciphertext: QXBCQOVVNGNRTTM

Block Ciphers

�84

Definition: Let E be an encryption algorithm, and let Ek(X)
be the encryption of message X with key k. Let a
message X = x1x2… , where each xi is of a fixed length.
Then a block cipher is a cipher for which Ek(X) =
Ek(x1)Ek(x2)… .

Example: AES is a block cipher. It breaks the message
into 128-bit blocks and uses the same 128-, 192- or 256-
bit key to encipher each block

Block Ciphers

�85

Some encryption algorithms divide a message into a sequence of
parts, or blocks, and encipher each block with the same key.

Simplest mode of operation (ECB):

 k k k

 k k k

The ECB Penguin

�86

Image Credit: https://blog.filippo.io/the-ecb-penguin/

Cipher Block Chaining (CBC)

�87

ECB should not be used if encrypting more than one block of data
with the same key (advice: just avoid it)
Alternative: make each ciphertext block dependent on all blocks
processed up until that point

 k k k

 k k k

Initialization Vector Pitfall
• Predictable IVs for each transaction

‣ CBC mode: enables online attacks with
chosen-plaintext

�88http://sockpuppet.org/blog/2013/07/22/applied-practical-cryptography/

Example: Alice’s medical record for a specific condition
1. Assume Mallory can predict IVs: IVM and IVA

2. Mallory’s chosen plaintext: XM = IVM ⊕ IVA ⊕ “false”

3. Application encrypts: {XM} = Ek (IVM ⊕ XM) =
Ek (IVM ⊕ (IVM ⊕ IVA ⊕ “false”))
{XM} = Ek (IVA ⊕ “false”)

4. Mallory compares ciphertexts: {XM} = {XA}?

Choosing Initialization Vectors

�89

The IV can be made public after encryption.
Why is this secure?

Always use a random IV for each transaction

The IV is only used to ensure that the same plaintext
encrypts to different ciphertexts. After it is used, there is no
harm in releasing it, as it leaks no information about the
plaintext.

