
Cryptography 4

CSE 40567 / 60567:
Computer Security

�78

Homework #2 has been released. It is due
Thursday, Feb. 6th at 11:59PM

�91

See Assignments Page on the course
website for details

Advanced Encryption Standard (AES)

• If you need a symmetric key algorithm, this is the
one to use

• Based on Rijndael, winner of the 2001 NIST AES
competition

• Key sizes: 128-, 192- or 256-bit
• Block size: 128-bit
• Rounds: 10, 12 or 14 (depending on key size)

�92

FIPS PUB 197: Advanced Encryption Standard (AES)

ISO/IEC 18033-3: Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers

AES is a substitution-permutation network

• Works via a combination of both substitution and
permutation operations
‣ Fast in both hardware and software

• Operates on 4x4 column-major order matrix of bytes
(state)

�93

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

High-level overview of AES
1. KeyExpansions — round keys are derived from k using a key schedule

2. InitialRound

1. AddRoundKey

3. Rounds

1. SubBytes

2. ShiftRows

3. MixColumns

4. AddRoundKey

4. Final Round (no MixColumns)

1. SubBytes

2. ShiftRows

3. AddRoundKey
�94

SubBytes Step

�95

S-Box

Each byte in the state is replaced with its entry in a fixed 8-
bit lookup table (a substitution box), S; bi,j = S(ai,j).

ShiftRows Step

�96

Bytes in each row of the state are shifted cyclically to the left.
The number of places each byte is shifted differs for each
row.

MixColumns Step

�97

Each column of the state is multiplied with a fixed
polynomial c(x).

AddRoundKey Step

�98

Each byte of the state is XORed with a byte of the
round subkey.

AES Compatible Stream Modes

�99

Cipher Feedback (CFB) Mode, a variation of CBC that turns a block
cipher into a self-synchronizing stream cipher

Downside: Slow

 k k k

 k k k

AES Compatible Stream Modes

�100

Output Feedback (OFB) Mode also turns a block cipher into a
self-synchronizing stream cipher

Downside: Slow

 k k k

 k k k

AES Compatible Stream Modes

�101*Use this mode when a stream cipher is needed

Counter (CTR) Mode generates the next keystream block by
encrypting successive values of a counter combined with a
nonce (IV)

AES functions in LibreSSL / OpenSSL

�102

#include <openssl/aes.h>

int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key);
int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key);

int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key);
int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key);

void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
 size_t length, const AES_KEY *key,
 unsigned char *ivec, const int enc);

void AES_ctr128_encrypt(const unsigned char *in, unsigned char *out,
 size_t length, const AES_KEY *key,
 unsigned char ivec[AES_BLOCK_SIZE],
 unsigned char ecount_buf[AES_BLOCK_SIZE],
 unsigned int *num);

Public Key Cryptography

�103B. Schneier, Applied Cryptography, Chpt. 2

• A symmetric algorithm is like a safe
‣ The key is the combo
‣ Anyone with the combo can open the safe
‣ Anyone without the combo must learn safecracking

1976: Whitfield Diffie and Martin Hellman introduce
alternative paradigm with two keys:

Public (sharable) Private (secret)

kP kS

Clip art of a safe BY-SA 3.0 PDClipart.org

Sending a message using public key
crypto

�104

1. Alice and Bob agree on a public key crypto system

RSA

2. Bob sends Alice his public key

kP,B

Sending a message using public key
crypto

�105

X,kP,B
{X}

3. Alice encrypts her message using Bob’s public key and
sends it back to Bob

kP,B

4. Bob decrypts Alice’s message using his private key

{X}kP,B ,kS,B X

Sending a message using public-key
crypto and a central key repository

�106

• The protocol we just saw is clunky: Alice needs to
contact Bob before sending him a message

• If public keys are stored in an accessible database,
the protocol is simplified to three steps:

1. Alice gets Bob’s key from the database

kP,B

B

Database icon in the Tango style BY-SA 3.0 dracos

Sending a message using public-key
crypto and a central key repository

�107

X,kP,B
{X}

2. Alice encrypts her message using Bob’s public key and
sends it back to Bob

kP,B

3. Bob decrypts Alice’s message using his private key

{X}kP,B ,kS,B X

Bob isn’t involved until he reads his message

Practical public key crypto application:
email encryption via GPG

�108

• Free implementation of OpenPGP
standard (RFC4880)

• Public key encryption and signing
of data and communications

• Versatile key mangement system

Image Credit: http://www.oekonux-conference.org/documentation/texts/Meyer.html

apt-get install gnupg

How does public key crypto work?

• How do we generate two keys that work together?
• How do we make sure the public key doesn’t reveal

any information about the private key?
• How can we design the algorithm to be resilient to

chosen plaintext attacks: an attacker can choose any
message to encrypt

�109

Trapdoor Function

�110

Domain Range

f : easy

f -1: hard

f -1: easy with trapdoor tt

RSA
• First full-fledged public key encryption algorithm

- 1978: Ron Rivest, Adi Shamir, and Leonard Adleman
• If you need a public key encryption algorithm, this

is one to use
• Simple to understand and implement

- Security comes from the difficulty of factoring
large numbers

�111

R. L. Rivest, A. Shamir, and L.M. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM, vol. 21, no. 2, 1978

R. L. Rivest, A. Shamir, and L.M. Adleman, “On Digital Signatures and Public Key Cryptosystems,” MIT Laboratory for Computer
Science, Technical Report, MIT/LCS/TR-212, 1979

RSA Key Generation

�112

1. Choose two random large prime numbers of equal length,
p and q.

2. Compute the product (modulus): n = p⋅q

3. Randomly choose the encryption key e such that e and
(p - 1)(q - 1) are relatively prime

4. Use the extended Euclidean algorithm to compute the
decryption key, d, such that:

ed ≡ 1 mod (p - 1)(q - 1)

d = e-1 mod ((p - 1)(q - 1))

RSA Key Generation

• d and n are also relatively prime

• The numbers e and n are the public key kP

• The number d is the private key kS

• The two primes, p and q, are no longer needed. They
must be discarded and never revealed.

�113

RSA Encryption

�114

1. Divide a message X into numerical blocks xi that are
smaller than n (with binary data, choose the largest
power of 2 less than n).

 The encrypted messages, {X}, will be made up of
 similarly sized message blocks {xi}, of the same length

B. Schneier, Applied Cryptography, Chpt. 19

2. Apply the encryption formula:

 {xi} = xi mod ne

RSA Decryption

�115

1. Take each encrypted block {xi} and apply the decryption
formula:

 xi = {xi} mod n
d

The message could have also been encrypted with d and
decrypted with e. The use of the keys is arbitrary!

A short example

�116

1. p = 47 and q = 71

2. n = p ⋅ q = 3337

3. The encryption key e must have no factors in common
with: (p - 1)(q - 1) = 46 ⋅ 70 = 3220

Key Generation:

4. Choose e at random to be 79. Calculate d:
d = 79-1 mod 3220 = 1019 ← solved via extended Euclidean Alg.

5. Publish e and n, keep d secret. Discard p and q.

A short example

�117

Encryption:
1. X = 6882326879666683

2. Break X into small blocks (3 digits here):
x1 = 688
x2 = 232
x3 = 687
x4 = 966
x5 = 668
x6 = 003

3. The first block is encrypted as: 68879 mod 3337 = 1570 = {x1}

4. Repeating the encryption operation on subsequent blocks
yields: {X} = 1570 2756 2091 2276 2423 158

A short example

�118

Decryption:

1. First block: 15701019 mod 3337 = 688 = x1

2. Subsequent blocks are recovered in the same manner

How do we generate prime
numbers?
• If we always need different prime numbers, won’t we run

out?
‣ No: there are approximately 10151 primes 512 bits in

length or less (by comparison, there are only 1077 atoms
in the universe)

• What if two people accidentally pick the same prime
number?

‣ Improbable (you have much better odds at the Powerball)
• What if somebody creates a database of all primes?

‣ Impossible (would exceed physical limits of the universe)

�119

How do we generate prime
numbers?

1. Select a random number of a desired length

2. Apply a Fermat primality test (best with base 2 for
speed optimization)

3. Apply a certain number of Miller-Rabin primality tests
(depending on the length and allowed error rate)

�120

Pre-selection: test divisions by small prime numbers (up to
few hundreds) or sieve out primes up to 10,000 - 1,000,000
considering many prime candidates of the form b + 2i

large number up to a few thousands

Speed of RSA
Slow — use to transfer symmetric session keys for
the bulk of the encryption

�121

3.1 Ghz Intel Core i7
The numbers are in 1000s of bytes per second processed.

 $ openssl speed aes

 $ openssl speed rsa

RSA key sizes

What is considered to be secure in 2019?

�122

“Attacks always get better; they never get worse.”
-NSA Aphorism (as related by Bruce Schneier)

S. Bellovin, Thinking Security, Chpt. 6

Research suggests 1024-bit moduli are too small
(i.e., NSA can factor them):

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

If you are protecting 128-bit AES keys,
2,048-bit moduli are adequate

RSA functions in LibreSSL / OpenSSL

�123

#include <openssl/rsa.h>

RSA * RSA_new(void);
void RSA_free(RSA *rsa);

int RSA_public_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);
int RSA_private_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);
int RSA_private_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa,int padding);
int RSA_public_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa,int padding);

RSA *RSA_generate_key(int num, unsigned long e,
 void (*callback)(int,int,void *), void *cb_arg);

int RSA_check_key(RSA *rsa);

