CSE 40567 / 60567
Computer Security

g é P
N
= —

Cryptography 4

Homework #2 has been released. It Is due
Thursday, Feb. 6th at 11:59PM

See Assignments Page on the course
website for details

91

Advanced Encryption Standard (AES)

* |t you need a symmetric key algorithm, this is the
one to use

 Based on Rijndael, winner of the 2001 NIST AES
competition

* Key sizes: 128-, 192- or 256-bit
* Block size: 128-bit
 Rounds: 10, 12 or 14 (depending on key size)

FIPS PUB 197: Advanced Encryption Standard (AES)
ISO/IEC 18033-3: Information technology — Security techniques — Encryption algorithms — Part 3: Block ciphers 92

AES is a substitution-permutation network

 \Works via a combination of both substitution and
permutation operations

» Fast in both hardware and software

 QOperates on 4x4 column-major order matrix of bytes
(state)

bo bas bs b2

b1 bs by bi3
b be bio bia
b3 b7 b1 bis

93

High-level overview of AES

1. KeyExpansions — round keys are derived from k using a key schedule

2. InitialRound

1. AddRoundKey
3. Rounds

1. SubBytes

2. ShiftRows

3. MixColumns

4. AddRoundKey
4. Final Round (no MixColumns)

1. SubBytes

2. ShiftRows

3. AddRoundKey

94

SubBytes Step

Each byte in the state is replaced with its entry in a fixed 8-
bit lookup table (a substitution box), S; bi; = S(ai)).

aO 0 aO 1 a0,2 aO 3 b0,0 b0,1 b0,2 b0,3
SubBytes
al,O al,l a1,2 a1,3 [] b1,0 b1,1 b1,2 b1,3
a2,0 a2,] a2,2 2,3 bZ,O bZ,] b2,2 3
a3,0 a3,1 a3,2 a3,3 b3,0 : e L5
S

S-Box

ShiftRows Step

Bytes in each row of the state are shifted cyclically to the left.
The number of places each byte is shifted differs for each
row.

No
change| 20,0| %,1| %,2| Fo,3 %,0| 9o,1| 9o,2| Fo,3
g
a a a a [ShiftROW% a a a a
Shift 1
it 1,.0c 11| %12 /1,3 1,1 91,2| 91,3| 91,0
Shift 2 ol % ?2,2 Q3 Ao B3| Aol 9y
R —
Shjft 3| 93| 931| 95 ?3,3 B 0| 93108575

MixColumns Step

Each column of the state is multiplied with a fixed
polynomial c(x).

MixCqumns]

—

& c(x)

AddRoundKey Step

Each byte of the state is XORed with a byte of the
round subkey.

a0,0 a0,1 a0,2 a0,3 b0,0 bO,l b0,2 b0,3
a1,0 a1. a12 a1,3 @nm(; b1,0 b1, b1.2 b1,3
a2,0 aZ a2,2 l2,3 b2,0 b2 b2,2 3
a3,0 a3,1 3,2| 73,3 b3,0 b3 2)
Koo| Ko.1| Koz | ko3
k1,0 kl,l I(1,2 I(1,3
kZ,O k2, k2,2 .3
k3,0 k3,1) 3,3

A

=S Compatible Stream Modes

Cipher Feedback (CFB) Mode, a variation of CBC that turns a block
cipher into a self-synchronizing stream cipher

Initialization Vector (V)

(INENEENEERERER

!

l

l

k block cipher k block cipher k block cipher
encryption encryption encryption
Plaintext Plaintext Plaintext
IIIIIIIIIIII]Ir IIIIIIIlIIIIIIr IIIIIIIlIIIIII—r)%
[HENNENEEEEEER [HENNENEEEEEER [HENNENEEENEER
Ciphertext Ciphertext Ciphertext
Cipher Feedback (CFB) mode encryption
Initialization Vector (IV)
HNEEEEEEEREER l l
k block cipher k block cipher k block cipher
encryption | encryption encryption
Ciphertext Ciphertext Ciphertext
<[TITTITTTITITT] <[TITTTITTTITIT1] <[TITTTITTTITITT]
INNEEEEEERRER INNENEEEERRER INNEEEEEEERER
Plaintext Plaintext Plaintext

Downside: Slow

Cipher Feedback (CFB) mode decryption

99

AES Compatible Stream Modes

Output Feedback (OFB) Mode also turns a block cipher into a
self-synchronizing stream cipher

Initialization Vector (I1V)
HENEEREREREEN

| l l

k block cipher k block cipher k block cipher
encryption encryption encryption
Plaintext Plaintext Plaintext
LTI rrff)— LT rrff)— LTI rrff)—
INNENENENNEER INNEEEEEEERRER HINEENENENERER
Ciphertext Ciphertext Ciphertext

Output Feedback (OFB) mode encryption

Initialization Vector (I1V)
HENEENERERERE

| l l

k block cipher k block cipher k block cipher
encryption encryption encryption
Ciphertext Ciphertext Ciphertext
LITTTTITITIT) — LITTTTITTITIIT) — LITTTTITTITIT) —
LIITTTTITTITT T CLLITTTITTITTITT] CLLITTTITTIITI T
Plaintext Plaintext Plaintext

Output Feedback (OFB) mode decryption

Downside: Slow

100

A

=S Compatible Stream Modes

Counter (CTR) Mode generates the next keystream block by
encrypting successive values of a counter combined with a
nonce (V)

Nonce Counter Nonce Counter Nonce Counter
c59hcf35. 00000000 c59hcf35. 00000001 c59hcf35. 00000002

INEEEENEEREER [HENNENEEEREEN (HENEEENEEEEER
} } }
block cipher block cipher block cipher

encryption encryption encryption
Plaintext

Plaintext Plaintext
HEERENEREREER HEERENEREREER HEENENEREREER

HEENENEEEEEEN LITTTTTTTTTTT] LITTTTTTTTTTT]
Ciphertext Ciphertext Ciphertext

Key — Key — Key —

Counter (CTR) mode encryption

Nonce Counter Nonce Counter Nonce Counter
c59hcf35. 00000000 c59bcf35. 00000001 c59bcf35. 00000002

INNEEENEEEEER INNEEENEEERER INNEEENEEEEER

{ { {

block cipher block cipher block cipher
encryption encryption encryption

Key — Key — Key —

Ciphertext —— Ciphertext —— Ciphertext ——
LLITTTITTITITT] LLITTTITTITTITT] CLLITTTITTITTIT]

HEENEREREREER HEEREREREREER HEENEREREREER
Plaintext Plaintext Plaintext

Counter (CTR) mode decryption

*Use this mode when a stream cipher is needed

101

AES functions in LibreSSL / OpenSSL

#include <openssl/aes.h>

int AES set encrypt key(const unsigned char *userKey, const int bits,
AES KEY *key);

int AES set decrypt key(const unsigned char *userKey, const int bits,
AES KEY *key);

int private AES set encrypt key(const unsigned char *userKey, const int bits,
AES KEY *key);

int private AES set decrypt key(const unsigned char *userKey, const int bits,
AES KEY *key);

volid AES cbc encrypt (const unsigned char *in, unsigned char *out,
size t length, const AES KEY *key,
unsigned char *ivec, const int enc);

void AES ctrl28 encrypt (const unsigned char *in, unsigned char *out,
size t length, const AES KEY *key,
unsigned char ivec[AES BLOCK SIZE],
unsigned char ecount buf[AES BLOCK SIZE],
unsigned int *num) ; B B B

102

Public Key Cryptography

e A symmetric algorithm is like a safe
: » The key is the combo
» Anyone with the combo can open the safe
» Anyone without the combo must learn safecracking

Clip art of a safe @ BY-SA 3.0 PDClipart.org

1976: Whitfield Diffie and Martin Hellman introduce
alternative paradigm with two keys:

Public (sharable) Private (secret)

B. Schneier, Applied Cryptography, Chpt. 2 103

Sending a message using public key
crypto

1. Alice and Bob agree on a public key crypto system

104

Sending a message using public key
crypto

3. Alice encrypts her message using Bob’s public key and
sends it back to Bob

105

Sending a message using public-key
crypto and a central key repository

® The protocol we just saw is clunky: Alice needs to
contact Bob before sending him a message

e |[f public keys are stored in an accessible database,
the protocol is simplified to three steps:

1. Alice gets Bob’s key from the database

106

Sending a message using public-key
crypto and a central key repository

2. Alice encrypts her message using Bob’s public key and
sends it back to Bob

Bob isn't involved until he reads his message

107

Practical public key crypto application:
email encryption via GPG

=4GnuPG

————— BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.9 (GNU/Linux)

mQGiBEKDIXwRBACOh4q4ueWrOskKk TDP+XKwZEHSTYFk fxjAULITyZpGBajYZuX0
y/u7HTAkggS/eSXOVErNFrIUIkdXhOED/FQxE7tq5tBQv22i/ehoakewwSRNYy0e
yUSY rpCFh4Ktszo2L XIADSHTEmMKIBow6pHT8PKBN20qZyYo/nFvTzG7GlwCghzKt
mUJ6dds70NZvpGbMBeI /0JsEAIY7dPbI1M1Xzauklo9cmK rnL2P7SK8vsQZUvcZL
7X7dI4J0TWYK19ShOXjQNA7CIbbv10uKJuXwlLsH/VzX+MD3P910ZbDEQeAtudmLG
kxcYMU/rPOjuC7erPDmL47+N/sS/2qH0211Kf2Sulk ry57ikcZxdt5czLztWFc 9l
fXWF3ICIbZHA318ANn1BI9dLXBHfNNFajQIZ rdwfw+gDktiEYEEBECAAYFAKZ3/90A
CgkQlWQfayU+W0005QCgqCrojF3nDPhcwGK+FtOvIUmivRAAoKScOokgf35eF034
LX0YpeO@eTOomP8CIBQzqvNOj tUZ94Vux6tgV8eygEOKLQibSYodQSHTKg+WKKXIt
dGy+/kmj 1LE9py8vk fioHOAFhHTVJyx8DUEXIzBnFwX r8E822hgN/qt5Mg9y90By
MrFa0fZ7YdcV1y/yYooTvQA78A3gyFle7vBsEJC7x04eTdt2/9/kiSFZ3mGAsIKe
4dB61 rh1Ca5gtVQHOZ /HRRNmUC1PC8Wph/u2z8sgT6BY f59mX4q8gi60Ar30g3IF
XEWhWIhJBBgRAgAIBQJICQ/W5AhsMAA0JEAMKDQZT2UAUWYMAN2NBNHIOIMcnj 800
FIgyxFGXBs1CAJ4zcUz74RbQuP+UV/hPf201Y7Se0A==

=q2SM

Image Credit: http://www.oekonux-conference.org/documentation/texts/Meyer.html

apt-get install gnupg

e Free implementation of OpenPGP

standard (RFC4880)

e Public key encryption and signing

of data and communications

¢ \ersatile key mangement system

108

How does public key crypto work?

« How do we generate two keys that work together?

« How do we make sure the public key doesn't reveal
any information about the private key?

* How can we design the algorithm to be resilient to
chosen plaintext attacks: an attacker can choose any
message 1o encrypt

109

Trapdoor Function

f: easy

T

Domain Range

-
~o .-
~o -

- -

f;1. easy with trapdoor ¢

110

RSA

* First full-fledged public key encryption algorithm
- 1978: Ron Rivest, Adi Shamir, and Leonard Adleman

 |f you need a public key encryption algorithm, this
IS one to use

e Simple to understand and implement

- Security comes from the difficulty of factoring
large numbers

R. L. Rivest, A. Shamir, and L.M. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM, vol. 21, no. 2, 1978

R. L. Rivest, A. Shamir, and L.M. Adleman, “On Digital Signatures and Public Key Cryptosystems,” MIT Laboratory for Computer
Science, Technical Report, MIT/LCS/TR-212, 1979

111

RSA Key Generation

1. Choose two random large prime numbers of equal length,
pandg.

2. Compute the product (modulus): n=p-q

3. Randomly choose the encryption key e such that e and
(p - 1)(g - 1) are relatively prime

4. Use the extended Euclidean algorithm to compute the
decryption key, d, such that:

ed=1mod(p-1)(g-1)
d=elmod ((p-1)(g-1))

112

RSA Key Generation

* d and n are also relatively prime
 The numbers e and n are the public key kp
* The number d is the private key ks

 The two primes, p and ¢, are no longer needed. They
must be discarded and never revealed.

113

RSA Encryption

1. Divide a message X into numerical blocks x; that are
smaller than » (with binary data, choose the largest
power of 2 less than n).

The encrypted messages, {X}, will be made up of
similarly sized message blocks {x;}, of the same length

2. Apply the encryption formula:

{xi} =ximod n

B. Schneier, Applied Cryptography, Chpt. 19 114

RSA Decryption

1. Take each encrypted block {x;} and apply the decryption
formula:

Xi = {xi}dmod n

The message could have also been encrypted with d and
decrypted with e. The use of the keys is arbitrary!

115

A short example

Key Generation:

1.p=47and g=171
2.n=p-q=23337

3. The encryption key e must have no factors in common
with: (p - 1)(g - 1) =46 - 70 = 3220

4. Choose e at random to be 79. Calculate 4
d="79-1mod 3220 = 1019 « solved via extended Euclidean Alg.

5. Publish e and n, keep d secret. Discard p and g.

116

A short example

Encryption:
1. X = 6882326879666683

2. Break X into small blocks (3 digits here):

x1 = 688
x2 =232
x3 = 687
x4 =966
X5 = 668
x6 =|003

3. The first block is encrypted as: 6887 mod 3337 = 1570 = {x1}

4. Repeating the encryption operation on subseqguent blocks
yields: {X} = 15702756 2091 2276 2423 158

117

A short example

Decryption:

1. First block: 15701019 mod 3337 = 688 = x1

2. Subsequent blocks are recovered in the same manner

118

How do we generate prime
numbers”?

* |f we always need different prime numbers, won't we run
out”?

» No: there are approximately 10757 primes 512 bits in
length or less (by comparison, there are only 1077 atoms
in the universe)

* What if two people accidentally pick the same prime
number?

» Improbable (you have much better odds at the Powerball)

* What if somebody creates a database of all primes?

» Impossible (would exceed physical limits of the universe)

119

How do we generate prime
numbers”?

1. Select a random number of a desired length

2. Apply a Fermat primality test (best with base 2 for
speed optimization)

3. Apply a certain number of Miller-Rabin primality tests
(depending on the length and allowed error rate)

Pre-selection: test divisions by small prime numbers (up to
few hundreds) or sieve out primes up to 10,000 - 1,000,000
considering many prime candidates of the form b + 2i

— AN

large number up to a few thousands

120

Speed of RSA

Slow — use to transfer symmetric session keys for
the bulk of the encryption

3.1 Ghz Intel Core i7
The numbers are in 1000s of bytes per second processed.

$ openssl speed rsa

sign verify sign/s verify/s
rsa 512 bits 0.000134s 0.000010s 7437.2 103127.2
rsa 1024 bits 0.000454s 0.000022s 2203.4 45325.5
rsa 2048 bits 0.002358s 0.000063s 424.0 15980.3
rsa 4096 bits 0.014172s 0.000200s 70.6 4993.3

S openssl speed aes

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128 cbc 145688.81k 149145.51k 150745.15k 147818.26k 150304.14k
aes-192 cbc 127548.47k 128854.67k 130738.82k 130399.58k 129314.59k

aes—-256 cbc 111384.28k 107228.01k 111353.87k 113593.73k 116542.79k

121

RSA key sizes

"Attacks always get better; they never get worse.”
-NSA Aphorism (as related by Bruce Schneier)

What is considered to be secure in 20197

Research suggests 1024-bit moduli are too small
(i.e., NSA can factor them):

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf

If you are protecting 128-bit AES keys,
2,048-bit moduli are adequate

S. Bellovin, Thinking Security, Chpt. 6 122

RSA functions in LibreSSL / OpenSSL

#include <openssl/rsa.h>

RSA * RSA_new(void);
void RSA free (RSA *rsa);

int

int

int

int

RSA

int

RSA public encrypt (int flen, unsigned char *from,

unsigned char *to, RSA *rsa, 1int padding);

RSA private decrypt (int flen, unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

RSA private encrypt (int flen, unsigned char *from,
unsigned char *to, RSA *rsa,int padding);

RSA public decrypt(int flen, unsigned char *from,

unsigned char *to, RSA *rsa,int padding);

*RSA generate key(int num, unsigned long e,
void (*callback) (int,int,void *), void *cb arqg);

RSA check key (RSA *rsa);

123

