
Software Security 1

CSE 40567 / 60567:
Computer Security

�1

Homework #3 has been released. It is due
2/18 at 11:59PM

�2

See Assignments Page on the course
website for details

Midterm Exam: 2/27 (In Class)

�3

Course Roadmap
Basics

3 Core Areas

The Web

�4

(weeks 1 & 2)

(weeks 3 - 6)

(weeks 11 - 15)(weeks 6 - 10)

(weeks 15 & 16)

Advanced Persistent Threats

�5

Two Facets:
1. Good target intelligence
2. Technical attack that isn’t easily deflected

S. Bellovin, Thinking Security, Chpt. 3

Example: Stuxnet,
malware targeted at
Iranian nuclear facilities

Siemens Simatic S7-300 BY-SA 2.5 Ulli1105

Stuxnet Background

�6

• Objective: vary speeds of
centrifuge motors by
infecting Siemens S7 PLCs

• Level of sophistication
hints at state-sponsored
work
‣ Israel?
‣ United States?

Map of the main sites of Iran's nuclear program BY-SA 4.0 Yagasi

Stuxnet’s Technical Capabilities
• Exploited four “0-day” vulnerabilities in MS Windows

• Spread via a LAN or USB flash drives

• Relayed status information back to attackers

• Made use of rootkits in Windows and the PLC hardware
(a first)

�7
Step7 communicates with a PLC BY-SA 3.0 Grixlkraxl

What can we learn from software
like Stuxnet?

Remarkable amount of intelligence about the target
- Known organizational links by which a flash drive

attack might spread
- Precise information on PLCs and motor speeds that

could damage operations

�8

What can we learn from software
like Stuxnet?

�9

Significant required resources for pulling
something like this off (estimated by Symantec)

- 5-10 developers
- 1/2 a year of development time
- Additional resources for testing, management, and

intelligence-gathering

Framing for our discussion of software security

Brute Force Attacks and
Password Cracking

�10

Low hanging fruit

• Even reduced keyspace searches are hard
‣ Randomly searching an AES keyspace of size 2128

will not yield anything useful

• Why conduct an exhaustive brute force attack
against the keyspace when users choose bad
passwords?
‣ Dictionary attack is far more efficient

�11

Username: jdoe
Password: ChicagoBulls

Password Cracking Tools

�12

http://www.openwall.com/john/

cat pass.txt
user:AZl.zWwxIh15Q
john -w:password.lst pass.txt
Loaded 1 password hash (Traditional DES [24/32 4K])
example (user)
guesses: 1 time: 0:00:00:00 100% c/s: 752 trying: 12345 - pookie

• Primarily for Unix, but runs on 15
different platforms

• Supports many different hash algorithms
via system’s crypt(3)

http://pentestmonkey.net/cheat-sheet/john-the-ripper-hash-formats

John’s attack modes

�13

1. Dictionary attack
• Text string is encrypted in the same format as the

password being examined
• Both cipher text representations are compared
• John can apply a number of “mangling” rules to the

dictionary words before encryption

Choose a base word → notredame
“Leetify” → n0tr3d4m3
Append / prepend things → g0n0tr3d4m3!

John’s attack modes

2. Brute force attack
• John attempts to go through all possible plaintexts,

encrypting each one in the same format as the
password being examined

• Both cipher text representations are compared
• Optimization: John makes use of character frequency

tables to try plaintexts containing more frequently used
characters first

�14

Brute force attack against SMTP
passwords

Password cracking attacks against network
services in the wild are common

�15

Jan 3 15:19:48 cortex saslauthd[7021]: do_auth : auth failure:
[user=custsvc] [service=smtp] [realm=mail.vast.uccs.edu] [mech=pam]
[reason=PAM auth error]
Jan 3 15:20:06 cortex saslauthd[7020]: do_auth : auth failure:
[user=custsvc] [service=smtp] [realm=mail.vast.uccs.edu] [mech=pam]
[reason=PAM auth error]
Jan 3 15:20:17 cortex saslauthd[7019]: do_auth : auth failure:
[user=custsvc] [service=smtp] [realm=mail.vast.uccs.edu] [mech=pam]
[reason=PAM auth error]
Jan 3 15:20:26 cortex saslauthd[7016]: do_auth : auth failure:
[user=custsvc] [service=smtp] [realm=mail.vast.uccs.edu] [mech=pam]
[reason=PAM auth error]

…

fail2ban

• Monitors log files for brute force attacks
‣ /var/log/auth.log, /var/log/

apache/access.log

• Blocking mechanisms
‣ firewall rules, updates to TCP Wrapper's

hosts.deny table, email notifications, or any
user-defined action that can be carried out
by a Python script.

�16

http://www.fail2ban.org/

Common Software to monitor: Apache, sshd, Postfix

Brute force attack against
Wordpress passwords

�17

• Web software with authentication mechanisms is also
prone to attack

• Limit logins and implement 2-factor authentication

Rainbow Tables

• From an attacker’s perspective, password cracking
is expensive:
‣ Each password needs to be hashed, which is slow
‣ Each pre-computed hash needs to be stored, which

isn’t feasible for large sets of passwords

�18http://kestas.kuliukas.com/RainbowTables/

Rainbow Tables are a compromise between
pre-computation and low memory usage

Reduction Functions

�19

Plaintexts Hashesreduce

hash

• A hash function maps plaintexts to hashes
• A reduction function maps hashes to plaintexts

• The reduction function does the reverse of a hash
function, but it isn’t its inverse

Example Reduction Function

�20

Assume:
Set of plaintexts is [0123456789]{6} (all numeric passwords of
length 6)
Hash function is md5()
Reduction function R() returned the first six numbers of the hash

md5("493823") = "222f00dc4b7f9131c89cff641d1a8c50"

R("222f00dc4b7f9131c89cff641d1a8c50") = "222004"

This process generated another plaintext from the hash of the
previous plaintext — the purpose of the reduction function.

Rainbow table chain

�21

Plaintexts Hashes

After generating many chains the table might look something like:
iaisudhiu = 4259cc34599c530b1e4a8f225d665802
oxcvioix = c744b1716cbf8d4dd0ff4ce31a177151
9da8dasf = 3cd696a8571a843cda453a229d741843
[...]
sodifo8sf = 7ad7d6fa6bb4fd28ab98b3dd33261e8f

start

end

• The tables are made up of chains of hash and reduction functions
• A table only stores the starting plaintext and final hash

Rainbow table algorithm
• Assume Mallory has a hash with an unknown plaintext
• She checks to see whether it is inside any of the

generated chains

�22

while(hash not found)

1. Look for the hash in the list of final hashes, if it is there break out of the loop.

2. If it isn't there reduce the hash into another plaintext, and hash the new
plaintext.

3. Goto the start.

4. If the hash matches one of the final hashes, the chain for which the hash
matches the final hash contains the original hash.

Mallory can now get that chain's starting plaintext, and start hashing and
reducing it, until she comes to the known hash along with its secret plaintext.

Checking the chains

�23

Plaintexts Hashes

Check the last column of the table: reduce and hash once

Check the second to last column of the table: reduce and
hash twice

Plaintexts Hashes

Checking the chains

�24

Check the third to last column of the table: reduce and
hash three times

Plaintexts Hashes

Plaintexts Hashes

Match: The starting plaintext (stored with the ending hash) is reduced
and hashed until the correct plaintext is found within the chain

One problem: collisions

�25

Plaintexts Hashes

Two plaintexts hash to the same value:

This causes cycles in the table:

Plaintexts Hashes

No guarantee
that there will

be a hash of a
plaintext that
will reduce to
some other

given plaintext.

Solution: use a different reduction
function in each column

• Origin of the name “Rainbow Table”
‣ If each reduction function is a different color, with starting

plaintexts at the top and final hashes at the bottom, the table
would look like a rainbow

• Chain merges become rare, because collisions have to
occur on the same column (chance of collision is 1 /
chain length)

• Loops are also solved: if a hash in a chain is the same
as a previous hash it won't reduce to the same plaintext.

�26

Color-coded reduction
functions

�27

http://www.thesecurityblogger.com/understanding-rainbow-tables/

Password Cracking Tools
Ophcrack (http://ophcrack.sourceforge.net/)

�28

Screenshot of w:Ophcrack version 3.2.0 BY-SA 3.0 Ysangkok

Windows password cracker based on rainbow tables

• Runs on Windows, Linux/Unix,
Mac OS X, ...

• Cracks LM and NTLM hashes

• Free tables available for
Windows XP and Vista/7

• Live image available to simplify
the cracking

Password Salts
• With a dictionary, it’s possible to pre-compute a hash

for every word, for all known algorithms
• How do we defend against this?

�29

Calculate a different hash:

S. Bellovin, Thinking Security, Chpt. 7

H’(username, site, password)

and use the high-order 64 bits as the salt and the low-order
18-24 bits as the iteration count.
Iterations slow down attacks, e.g., if every password is
hashed 100,00 times, guessing is slowed down to 1/100,000
the previous rate. (Slows down legitimate use as well.)

